تکنولوژی
تعریف تکنولوژی و تکنولوژی آموزشی
«کاربرد ابتکاری یافتههای یک رشتة علمی را در صنعت- یا در یک کار عملی- تکنولوژی میگویند.»با توجه به این تعریف، تکنولوژی آموزشی را چنین تعریف کردهاند:
«مجموعهای از معلومات ناشی از کاربرد علوم آموزشی و فراگیری در دنیای حقیقی کلاس درس، همراه با ابزارها و روشهایی که کاربرد علوم گفته شده در بالا را تسهیل میکند...»

علاوه بر تعریف فوق، از تکنولوژی آموزشی تعریفهای دیگری نیز شده است. تعریف زیر را که از سایر تعریفها جامع تر است، برای آگاهی آن دسته از علاقهمندان که به تازگی با مفهوم تکنولوژی آموزشی آشنا شدهاند، انتخاب کردهایم:
«تکنولوژی آموزشی عبارت است از روش سیستماتیک طراحی، اجرای و ارزشیابی کل فرایند تدریس و یادگیری که براساس هدفهای معین و یا بهره گیری از یافتههای روان شناسی یادگیری و علم ارتباطات و به کارگیری منابع مختلف- اعم از انسانی وغیر انسانی- به منظور آموزش مؤثرتر تنظیم واجرا می ش
مرحله اول – ابزار و وسایل
مرحله دوم - مواد آموزشی
مرحله سوم – نظامهای درسی
مرحله چهارم – نظامهای آموزشی
مرحله پنجم – نظامهای اجتماعی
تاسیس گرایش تکنولوژی آموزشی برای اولین باردر ایران، سال ۱۳۷۲
در یک قرن اخیر براساس تحولات به وقوع پیوسته در دیدگاههای معرفتشناسی، رویکردهای روانشناسی یادگیری و سایر علوم وابسته و مربوط به ارتباطات،سیستمها و تعلیم و تربیت،تعریف تکنولوژی آموزشی،دستخوش تحولات بنیادین شده است. این تعریف از«کاربرد وسایل و ابزار در آموزش»،به«طراحی،تولید،اجرا و ارزشیابی نظامهای آموزشی»و سرانجام به«نظریه و عمل طراحی،تهیه(تولید)،استفاده(کاربرد)، مدیریت و ارزشیابی فرایندها و منابع یادگیری».تغییر یافته است.بررسی تاریخچهء این رشته از علوم کاربردی در غرب که زادگاه آن است،نشان از تعامل صاحبنظران این علم با شرایط و اقتضائات محیطی و نیازها و جهتگیریهای نظامهای تربیتی آنان دارد، درحالیکه موقعیت این رشته در کشور ما ایران به منزله یک رشتهء علمی کاملاً وارداتی،همانند بسیاری از رشتههای دیگر دانشگاهی متفاوت است.به همین سبب برای بررسی تاریخ این رشته در ایران میباید در زوایای رخدادها و وقایع مرتبط با تعلیم و تربیت در پی نشانههای مربوط به جنبهای یا جوانبی از مباحث،کاربردها و محتواهای مرتبط با این رشته جستجو کرد تا اثری از آن یافت.در این نوشته بنا بر اهمت و تأثیرگذاری رویداد بسیار مهم تأسیس دارالفنون بررسی خود را از این نقطهء عطف تاریخی شروع میکنیم و با پیگیری رویدادهای آموزشی و فرهنگی کشورمان به خصوص از اول قرن چهاردهم هجری شمسی(مطابق با اوائل قرن بیستم میلادی)، سیر تحول شناخت،موقعیت و کاربرد رشته تکنولوژی آموزشی را دنبال میکنیم.این مطالعه بهخصوص بر وقایع معطوف به زمان پیش از شکلگیری رشتهء تکنولوژی آموزشی در حکم یک رشتهء تحصیلی دانشگاهی در سال 1372 و پس از این تاریخ متمرکز خواهد شد.بررسیها نشان میدهند که به دلیل رخدادهای بسیار مهم تاثیرگذاری،همچون نهضت مشروطه،جنگ جهانی اول،منازعات کشورهای استعماری در کشور ما برای کسب امتیازات،کودتای رضاخان،جنگ جهانی دوم، نهضمت ملی شدن نفت و سرانجام کودتای 28 مرداد 1332 و تبعات مخرب و نامبارک آن کشور ما عملاً پنجاه سال اول قرن بیستم میلادی که گسترهء ناب رشد و شکوفایی علوم در کشورهای غربی بوده را از دست داده است.این عقبماندگی موجب عدم رشد بسیاری از علوم در ایران شده و تکنولوژی آموزشی به عنوان یک رشته تحصیلی دانشگاهی و در حکم یک تخصص کاربردی در آموزش و پرورش و آموزش عالی کشورمان از آن جمله است.برداشتهای ناصواب از این رشته موجب پنهان ماندن ماهیت،فلسفه و محتوای آن برای بسیاری از دستاندرکاران آموزش و پرورش و رشته حیاتی در تعلیم و تربیت جهانی محروم ساخته است.در بخش پایانی این نوشته به چشمانداز این رشته در آینده در پرتو بررسیهای انجام شده خواهیم پرداخت.امید است که چنین بررسیهایی گرچه بسیار محدود و ناقص،بتوانند پرتوی فرا راه دانشپژوهان و علاقهمندان این رشته باشد.
در آبان ماه سال ۱۳۷۲برنامه کارشناسی علوم تربیتی گرایش تکنولوژی آموزشی برای اولین بار در شورای عالی برنامه ریزی وزارت فرهنگ وآموزش عالی به تصویب رسید. این برای اولین بار است که رشته تکنولوژی آموزشی در کشور ما به عنوان یک رشته رسمی دانشگاهی مطرح میشود. مروری بر دروس تخصصی مصوب این گرایش نشان میدهد که تمام تحولات رخ داده در دوره دوم رشته در غرب در این برنامه وجود دارد (مانند:درس اصول طراحی پیامهای اموزشی، آموزش با روش بر سیستمها، ارزیابی نظامهای کوچک آموزشی، جامعه شناسی ارتباطی، آموزش برنامهای، اصول طراحی نظامهای آموزشی). در آبان ماه سال ۱۳۷۴برنامه کارشناسی ارشد تکنولوژی آموزشی به تصویب شورای عالی برنامه ریزی رسید وابتدا در دانشگاه علامه طباطبایی وبه دنبال آن در دانشگاه تربیت معلم به اجرا در آمد. دروس تخصصی این برنامه نشان دهنده وارد شدن مباحث نظامهای آموزشی وطراحی آنها، در کنار توجه به رایانه به عنوا ن اصلی ترین رسانه بعد از تحولات مربوط به تکنولوژی ارتباط واطلاعات است (مانند :برنامه نویسی رایانهای برای آموزش، وتولید برنامههای رایانهای آموزشی) این توجه به رایانه مسلماً در کنار دروسی همچون طراحی آموزشی، اصول تهیه برنامههای آموزشی وطراحی مراکز یادگیری، جهت گیری صحیح طرح مباحث نرمافزاری در کنار ابزارهای الکترونیک رانشان میدهد. خاطره یاری. منبع:مبانی نظری تکنولوژی اموزشی دکتر هاشم فردانش
تاریخچه استفاده از ابزار و وسایل آموزشی در ایران
گرچه ممکن است کشورهای مختلف الزاماً از این مراحل گذر نکرده باشند ولی بیشتر کشورها با این مراحل روبرو بودهاند. در کشور ما از سال ۱۳۰۶ به بعد، بعضی از مدارس اقدام به ایجاد آزمایشگاههای فیزیک و شیمی و علوم زیستی کردند، اما نداشتن کادر متخصص، کمبود ابزار و وسایل و مواد مورد نیاز و عدم اعتقاد به کاربرد این وسایل و روشها، سبب عدم موفقیت این مراکز و راکد ماندن فعالیتهای آنان شد. در سال ۱۳۰۸ وزارت فرهنگ، اداره کل هنرهای زیبا را تاسیس کرد. این اداره علاوه بر نظارت بر کلیه فعالیتهای هنری، مسئولیت استفاده از وسایل سمعی و بصری مدارس را نیز عهدهدار بود. ایجاد آزمایشگاههای سمعی و بصری، دانشسرای مقدماتی و دانشسرای عالی نیز جزء فعالیتهای این اداره بود. در سال ۱۳۴۱ ادارهای به نام اداره آموزش فعالیتهای سمعی و بصری در وزارت فرهنگ تشکیل گردید که بعداً با نام دفتر آموزش سمعی و بصری فعالیتهای خود را ادامه داد. توجه به فیلم به عنوان یک رسانه آموزشی در سطح جهانی سبب گردید این اداره اقدام به تشکیل جشنوارههای بینالمللی فیلمهای آموزشی کند. تلویزیون آموزشی در سال ۱۳۴۳ زیر نظر وزارت آموزش و پرورش تاسیس شد و کار خود را بعد از دو سال، با پخش برنامههای درسی در زمینه فیزیک، شیمی، جبر، علوم طبیعی، زبان و دستور فارسی شروع کرد. هدف از پخش این برنامهها جبران کمبود معلمهای متخصص و جبران کمبود آزمایشگاهها بود، اما به علت عدم تطابق وقت آن با برنامه دبیران و مدارس پخش آن متوقف شد. در سال ۱۳۵۲ تهیه برنامههای آموزشی به سازمان رادیو و تلویزیون ملی ایران واگذار شد و برنامههای آموزشی با پخش دروس راهنمایی در سال ۱۳۵۳ مجدداً شروع به فعالیت کرد و همزمان حدود سه هزار دستگاه تلویزیون بین مدارس شهرهای بزرگ کشور توزیع شد. ولی برنامههای تلویزیون به دلیل عدم برنامهریزی صحیح و عدم انتشار اطلاعات درست مربوط به زمان پخش، منجر به شکست گردید. در سال ۱۳۵۳ دوره فوقلیسانس تکنولوژی آموزشی تاسیس شد. گرچه قبل از این سال در دروس لیسانس تربیت معلم و علوم تربیتی، دروسی با عنوانهای مقدمات تکنولوژی آموزشی، تولید و کاربرد مواد آموزشی یا نقش وسایل ارتباط جمعی در آموزش و پرورش گنجانده شده بود، اما در دوره فوقلیسانس دروسی از قبیل طراحی سیستمیک آموزشی، تهیه خودآموزها، روانشناسی تربیتی و یادگیری، آمار و سنجش نیز دیده میشود. مرحله بعدی تکنولوژی در ایران، ایجاد دانشکده مکاتبهای ابوریحان بیرونی برای آموزش کارکنان دولت و با تکیه بر آموزگاران تاسیس شد. نحوه آموزش در دانشکده مکاتبهای از طریق ارسال کتب و نوار شنیداری و گاه کلاس حضوری رفع اشکال بود. مرحله بعدی در ایران ایجاد دانشگاه آزاد ایران و دانشگاه پیام نور است که به نظر میرسد هدفشان همگانی کردن سطح آموزش باشد.
سیر تحول رشته تکنولوژی اموزشی در مغری زمین: سیر تحول رشته تکنولوژی اموزشی در مغرب زمین در یک قرن اخیر بر اساس تحولات به وقوع پیوسته در دیدگاههای معرفت شناسی، رویکردهای روانشناسی یادگیری و سایر علوم وابسته و مربوط به ارتباطات، سیستمها و تعلیم و تربیت، تعریف تکنولوژی آموزشی، دستخوش تحولات بنیادی شده است. قرن هجدهم و نوزدهم میلادی دوران شکوفایی و توسعه علمی همه جانبه مغرب زمین بود. در این دو قرن اکتشافات و اختراعات علمی در زمینه های گوناگون و ظهور نظریه پردازانی مانند روسو، یستالوزی، هربارت و فروبل در حوزه تعلیم و تربیت به وارد شدن علوم طبیعی در برنامه درسی مدارس منجر شد که این امر سبب سریعتر شدن رشد علمی و اجتماعی کشورهای غربی گردید. در نیمه دوم قرن نوزدهم آموزش و پرورش به مثابه یک علم اجتماعی جای خود را در میان سایر علوم باز کرد و دوره پیش از جنگ جهانی اول، امیدهای آموزشی تازه در سه جنبش جداگانه اما مرتبط به هم، به وقوع پیوست: جنبش مطالعه کودک، جنبش بررسی مدرسه و رشد مطالعات تجربی در آموزش و پرورش.
سیر تحول رشته تکنولوژی آموزشی در مغرب زمین
تاریخچه پیدایش و تحول رشته تکنولوژی آموزشی در غرب را می توان به سه دوره به شرح زیر تقسیم کرد: (فردانش، ۱۳۸۷،ص۲۱-۴۴).
۱. دوره اول از ابتدای قرن بیستم میلادی.
دوره دوم از اوائل دهه ۱۹۶۰ تا اواخر۱۹۸۰
دوره سوم از اوائل دهه ۱۹۹۰میلادی تا حال حاضر.
فلشزیگ(۱۹۹۸) تکنولوژی آموزشی را در سه دوره فوق چنین نامگذاری کرده است:
دوره اول تکنولوژی ابزاری که در این دوره رسانه ها ابزاری برای غنی کردن آموزش های سنتی اند.
دوره دوم تکنولوژی نظامها که در این دوره رسانه ها جزیی از نظامهای متشکل از انسان و ابزارند و برای آموزش عملکردهای خاص به کار می روند.
دوره سوم تکنولوژی فکورانه که دارای ویژگی های زیر است:
۱. به رسمیت شناختن انواع دانش حاصل از منابع علمی سنتی و تجربه
۲. مبتنی بودن بر دانش نظری و دانش عملی و مقدم دانستن دانش نظری بر عملی
۳. به کار گیری انواع دانش بر اساس یک دیدگاه ارزش شناسی مشخص
۴. فکورانه بودن به معنای تعمق کردن درباره تکنولوژی (بعد دانش و ارزش ها) و محصولات آن (بعد طرحها و مواد)
سهیلا92 منبع: مقدمات تکنولژی آموزشی دکتر خدیجه علی آبادی
تاریخچه پیدایش و تحول رشته تکنولوژی آموزشی را می توان از نظر زمانی به سه دوره مشخص تقسیم کرد : دوره اول : از اوایل قرن بیستم تا اواخر سالهای 1950 ( رویکرد اثبات گرایی – رفتار گرایی – تکنولوژی ابزاری ) دوره دوم : از اوایل سالهای 1960 تا اواخر سالهای 1980 ( رویکرد تعبیری – شناخت گرایی –تکنولوژی نظامها ) دوره سوم : از اوایل سالهای 1990 تا زمان حال ( رویکرد انتقادی – ساخت گرایی – تکنولوژی متفکرانه ) که در اینجا به شرح کامل دوره سوم از تاریخچه پیدایش و تحول تکنولوژی آموزشی میپردازیم . دوره سوم : رویکرد انتقادی – ساختگرایی – تکنولوژی متفکرانه : رویکرد انتقادی به زعم طرفدارانش به دنبال پر کردن فاصله بین رویکرد اثبات گرایی و رقیب آن یعنی رویکرد تعبیری یا تفسیری است و از رویکرد اثبات گرایی برای آنکه آن را تحویل گرایی می نامند و از رویکرد تعبیری برای آنکه نسبی گرایی ضمنی مستتر در دیدگاه معرفت شناسی است انتقاد کردند و زمینه را برای رشد رویکرد انتقادی فراهم آوردند . این رویکرد با جهت گیری های سیاسی خود به سلطه علم ، تکنولوژی و دیوان سالاری که از شاخصه های سرمایه داری است معترض و معتقد است که در این شرایط احتمال طرح سوال درباره هنجارها و ارزشهای اجتماعی و "زندگی خوب " در عرصه اجتماعی از بین می رود و بنابر این رویکرد انتقادی با طرح این سوالها که محور اصلی مباحث آن را تشکیل می دهد منجر به آزادی و رهایی افراد از عقاید نادرست و غلبه بر جور و ستم می شود . متفکران این رویکرد معتقدند که فلسفه باید در خدمت این مبارزه و جنبش اجتماعی قرار گیرد . صاحب نظران زیادی در رشته تعلیم وتربیت تحت تاثیر نظریه انتقادی قرار گرفتند و به جهت همخوانی برخی مبانی معرفت شناسی بنیادی خود بامکتب روانشناسی ساخت گرایی ، اغلب این رویکرد را در زمینه برنامه ریزی و آموزش مورد تاکید قرار دادند . ساخت گرایی نام خود را از کلمه ساخت یا ساختن اتخاذ کرده که منعکس کننده دیدگاه معرفت شناسانه آن است . ساخت گرایان معتقدند که ساختار دانش چیزی نیست که خارج از ذهن شاگرد وجود داشته باشد ، بلکه ساختار دانش حاصل تعامل مستمر با سازه های موجود و آزمایش و پالایش بازنماییهای ذهنی آن برای یافتن درک صحیح تری از جهان خارج است و بر این اساس فعالیت یادگیری باید محور توجه قرار گیرد نه فرایند آموزش . مهمترین پیش فرض معرفت شناسانه ساخت گرایی آن است که معنا ، تابعی از چگونگی ساختن آن بر اساس تجربه های فردی است . ساخت گرایان معتقدند که دانش در درون فرد و توسط او ساخته می شود و از منابع خارجی دریافت نمیشود .ساخت گرایان افراطی مانند گلیسرزفلد معتقدند که هیچ واقعیت عینی مستقل از فعالیت ذهنی انسان وجود ندارد . جهان فردی توسط ذهن خلق می شود و بنابراین هیچ جهانی واقعی تر از دیگری نیست .ساختن معنا بر بر تطابق آن با جهان خارج از ذهن مبتنی نیست ، بلکه به درک فرد از آن بستگی دارد . تمام ساخت گرایان معتقدند که ذهن موقعیتی ابزاری و اساسی برای تفسیر رویدادها ، اشیاء و دیدگاههای جهان خارج از ذهن دارد و این تفسیرها ، مبنای دانش فرد راکه شخصی و منحصربهفرد است تشکیل می دهد . .این رویکرد جدید باعث تغییرات اساسی در مباحث محوری اغلب رشته های تعلیم وتربیت و از آن جمله تکنولوژی آموزشی شد . عبور از رویکرد نظامهای آموزشی که به گفته رایگلوث دوره صنعتی در تکنولوژی آموزشی بود ، به دوره یا عصر اطلاعات به معنای تحول از مرحله تولید برنامه های آموزش معیار به مرحله خلق برنامه های آموزش طراحی شده برای تک تک فراگیران است . در این مرحله جدید طراحان به جای ایجاد نتایج یادگیری یکسان و از قبل تعیین شده برای تمام شاگردان ، به خلق تجارب یادگیری انحصاری برای هر یک از شاگردان می پردازند . زمینه ضروری چنین اقدامی ، پیشرفت سریع در تکنولوژیهای ارتباطات و رایانه است . تکنولوژیست های آموزشی برای طراحی برنامه های اموزشی به جای تاکید بر ساده سازی و یادگیریهای مبتنی بر توضیح و ارائه مستقیم باید بر زمینه های واقعی و ملموس تکیه کنند ، این امر موجب تحولات زیادی در مباحث رشته تکنولوژی آموزشی شده است . ماهیت و محتوای رشته تکنولوژی آموزشی در طول قرن بیستم ، سرانجام این رشته را در موقعیتی قرار داده است که با ورود و ادغام رویکردهای جدید به این رشته ، اینک به عنوان یک رشته علمی زنده و پویا در محافل تربیتی غرب حضور فعال دارد . از بارزترین خصوصیات این دوران که از آن با نام " پسامدرن " یاد می شود به گفته هلینکا و دنیس خصوصیت تکثر گرایی ، این زمانی بودن و پیچیدگی آن است که در مقابل خصوصیت جهانی بودن ، ثابت بودن و ساده بودن دوران نوگرایی خودنمایی می کند . دقیقاً به دلیل این خصوصیات ویژه است که در دوران پسامدرن تمام دیدگاههای هستی شناسی ، معرفت شناسی ، روانشناسی و روش شناسی در کنار هم و با درجه ای که ضرورت موقعیتهای واقعی آموزشی اقتضا میکند وجود دارد و ظهور و قدرت یافتن رویکرد ساخت گرایی در رشته تکنولوزی آموزشی منجر به نفی و کنار نهادن سایر دیدگاهها و رویکردها نشده است .A.moradian l منبع: فردانش، هاشم، مبانی نظری تکنولوژی آموزشی، سمت،1387 .
فتوولتاییک
فتوولتاییک (به انگلیسی: Photovoltaics) یا به اختصار PV، یکی از انواع سامانههای تولید برق از انرژی خورشیدی میباشد. در این روش با بکارگیری سلولهای خورشیدی، تولید مستقیم الکتریسیته از تابش خورشید امکانپذیر میشود. سلولهای خورشیدی از نوع نیمه رسانا میباشند که از سیلیسیوم یعنی دومین عنصر فراوان پوسته زمین ساخته میشوند. وقتی نور خورشید به یک سلول فتوولتاییک میتابد، بین دو الکترود منفی و مثبت اختلاف پتانسیل بروز کرده و این امر موجب جاری شدن جریان بین آنها میگردد. میتوان فتوولتایک را در دسته فناوریهای انرژیهای تجدید پذیر (نوشو) قرار داد.
انرژی خورشیدی
مقدار انرژی تابشی خورشید بر روی کره زمین ۶۰۰۰ برابر کل مصرف انرژیهای سالیانه بر روی زمین است که این مطلب نشان دهنده اهمیت توجه به این منبع در تامین نیازهای روزمره بشر است. اگر تا به حال انرژی خورشیدی رقیبی جدی برای سوختهای فسیلی محسوب نمیشده است، به دلیل پایین بودن تاریخی قیمت سوختهای فسیلی بوده است. اگر چه هنوز هم فناوری استفاده از انرژی خورشیدی به بلوغ خود نرسیده است، اما رسیدن به این تکامل نزدیک است. بسیاری از کشورهای جهان در تلاشند تا با جایگزینی انرژی خورشیدی در تولید حرارت و الکتریسیته حداکثر استفاده از این منبع انرژی را به دست آورده و زیانهای ناشی از مصرف سوختهای فسیلی را کاهش دهند.
تاریخچه فتوولتاییک
عبارت فتوولتاییک "Photovoltaic" ترکیـبی از کلمه یونانی "Photos" به معنی نور با "Volt" به معنای تولید الکتریسیته از نور است. کشف پدیده فتوولتاییک به فیزیکدان فرانسوی Edmond Becquerel نسبت داده میشود که در سال ۱۸۳۹ با چاپ مقالهای (Becquerel، ۱۸۳۹) تجربیات خود را با باتریتر (Wet Cell) ارائه نمود. او مشاهده نمود که ولتاژ باتری وقتی که صفحات نقرهای آن تحت تابش نور خورشید قرار میگیرند، افزایش نمی یابد .
اما اولین گزارش از پدیده PV در یک ماده جامد در سال ۱۸۷۷ بود وقتیکه دو دانشمند کمبریج R.E. Day و W.G.Adams در مقالهای به انجمن سلطنتی تغییراتی که در خواص الکتریکی سلنیوم وقتی که تحت تابش نور قرار میگیرد را، توضیح دادند (Adams and Day، ۱۸۷۷).
در سال ۱۸۸۳ Charles Edgar Fritts که یک مهندس برق اهل نیویورک بود، یک سلول خورشیدی سلنیومی ساخت که از برخی جهات شبـیه به سلـولهای خورشیـدی سیلیکونی امروزی بود. این سلـول از یک ویفـر نازک سلنیوم تشکیل شده بود که با یک توری از سیـمهـای خیلی نازک طلا و یک ورق حفاظتی از شیشه پوشانده شده بود. اما سلول ساخت او خیلی کم بازده بود. بازده یک سلول خورشیدی عبارت از درصدی از انرژی خورشیدی تابیده به سطح آن میباشد که به انرژی الکتریکی تبدیل شده باشد. کمتر از ٪۱ انرژی خورشیدی تابیده شده به سطح این سلول ابتدایی به الکتریسیته تبدیل میشد. با وجود این، سلولهای سلنیومی سرانجام در نورسنجهای عکاسی به طور وسیعی بکار گرفته شد.
سلولهای خورشیدی (فتوولتاییک)
عنصر اصلی فناوری فتوولتاییک، سلول خورشیدی است. سلولهای فتوولتاییک (PV) که عموم آن را با نام سلولهای خورشیدی میشناسند، از مواد نیمه رسانای حالت جامد تشکیل شدهاند. سیلیکون، عمومیترین ماده نیمه رسانا است که به واسطهٔ فراوانی آن در سلولهای PV مورد استفاده قرار میگیرد. اگر چه سلیکون عنصر فراوانی است و درصد زیادی از پوسته زمین را تشکیل میدهد، ولی سلولهای سیلیکونی به خاطر فرایند ساخت و خالص سازی سیلیکون، قیمت بالایی دارند.
سلو لهای فتوولتائیک با استفاده از اشعه خورشید و سلو لهای خورشیدی، و با ایجاد اختلاف فشار الکتریکی در نیمه هادیهایی که بطور مناسب ساخته شدهاند الکتریسیته تولید میشود. امروزه موثرترین و ارزان ترین سلو لهای خورشیدی مادهای به نام سیلیسم میباشد. ماسه یکی از منابع مهم سیلیسم بوده که پس از پالایش آن کریستالهای سیلیسم بدست میآید و پس از بریده شدن به صورت صفحه آماده میشود. به عبارت دیگر سلولهای فتوولتائیک که گاه نام سلولهای خورشیدی نیز به آن اطلاق میگردد از پولکهایی ساخته میشوند که نور را مستقیماً به الکتریسیته تبدیل میکند. این پولکها همانند ترانزیستور معمولا از لایههای نازک یک ماده نیمه هادی مانند سیلیکان با مقادیر کمی افزودنیهای خاص به منظور ایجاد مازادی از الکترون در یک لایه و کمبودی از الکترون در لایه دیگر ساخته میشوند. فوتونهای نور در یک لایه الکترو نهای آزاد را بوجود میآورند و یک رشته هادی، الکترونها را قادر میسازد که در یک مدار خارجی جریان یافته و به لایههایی که فاقد الکترون است دسترسی پیدا کنند. پنلهای فتوولتائیک از نیمه هادیها ساخته شده و با اتصال سیلیکونهای نوعP و N شکل میگیرند. وقتی نور خورشید به یک سلول فتوولتائیک میتابد، به الکترونها در آن انرژی بیشتری میبخشد. با تابش نور خورشید الکترونها در نیمه هادی پلاریزه شده، الکترونهای منفی در سیلیکون نوعN و یونهای مثبت در سلیکون نوعP بوجود میآیند. بدین ترتیب بین دوالکترود، اختلاف پتانسیل بروز کرده و این امر موجب جاری شدن جریان بین آنها میشود. از آنجا که سلو لهایPV کوچک، شکننده بوده و تنها مقدار کمی برق تولید میکنند آنها را به صورت مدول شکل میدهند. مدو لها در اندازههای متنوع عرضه میگردند ولی برای سهولت جابجایی ابعاد آنها به ندرت از ۹۰ سانتیمتر عرض در ۱۵۰ سانتیمتر طول تجاوز میکند. هنگامی که دو سلول با مدول در یک ردیف متصل میگردند ولتاژ آ نها دو برابر میشود و هنگامی که بصورت موازی به یکدیگر متصل میشوند جریان برق آن دو برابر میگردد.
انواع سامانههای فتوولتاییک
دو نوع اصلی از سامانههای فتوولتائیک (PV)برای استفاده در ساختمانها وجود دارد: منفرد و متصل به شبکه. هنگامی که اتصال به شبکه برق ممکن نبوده و یا مورد دلخواه نباشد نیاز به یک سامانه منفرد میباشد. در چنین مواردی برای تأمین برق به هنگام شب و یا در روزهای ابری و نیز هنگام نیاز به حداکثر مقدار برق نیاز به چند انباره میباشد. اندازه آرایه هایPVطوری تنظیم میشود که هم بارهای معمول روز هنگام و هم شارژ انبارهها را مهار کنند. در یک سامانه متصل به شبکه، برای تغییر جریان مستقیم از آرایهPVبه جریان متناوب (AC)با ولتاژ مناسب شبکه نیاز به یک مبدل میباشد. باید توجه داشت که در این حالت نیازی به انباره وجود ندارد و بدین ترتیب صرفه جویی قابل توجهی هم در هزینه و هم در نگهداری سامانه، ایجاد خواهد شد. در سامانههای منفرد، الکتریسیته مازادی که در طول روز تولیده شده است برای استفاده در شب و یا روزهای تاریک و ابری در انبارهها ذخیره میگردد. از آنجا که قیمت مبدلها و سلولها و انباره گران میباشد، یک سامانه ترکیبی (هیبریدی) که از نیروی باد استفاده میکند اغلب مکمل ایده آل برای سامانهPV میباشد چرا که نه تنها در طول شب باد میوزد بلکه در هوای بد نیز معمولاً باد قابل توجهی وجود دارد. علاوه بر آن در زمستان، زمانی که انرژی خورشیدی کمی برای برداشت وجود دارد هوا معمولا باد خیزتر ازتابستان میباشد. با این حال تمام مناطق برای استفاده از نیروی باد مناسب نیستند.
جهت گیری پنلهای فتوولتائیک
حداکثر جمعآوری امواج تابشی خورشید زمانی اتفاق میافتد که گردآور (کلکتور)، عمود بر پرتوهای تابش مستقیم باشد. از آنجا که خورشید هم به صورت روزانه و هم سالانه حرکت میکند تنها یک گردآور لولایی دو محوری میتواند میزان جذب را در طول سال به حداکثر برساند. با این حال گردآورهای لولایی تنها در اقلیمهای خشک که اکثرا دارای پرتوهای تابشی مستقیم میباشند میتواند برتری داشته باشد و حتی در آنجا نیز ۱۰ تا ۲۰ درصد امواج تابشی خورشید به صورت پخشی است. در اکثر اقلیمهای آفتابی و مرطوب، حدود یک دوم امواج تابشی خورشید مستقیم میباشد در حالیکه در اقلیمهای ابری ۸۰٪ یا بیشتر از امواج تابشی، پخشی میباشد. در صورت یکپارچگی با ساختمان نیز میبایست جهتگیری و زاویه مناسبی را مورد توجه قرار داد. بهترین زوایه برای یک آرایهPVاساساً تابع زمانی از سال است که بیشترین مقدار برق در آن مورد نیاز میباشد. اقلیمهای گرم بیشترین الکتریسیته را در طول تابستان و برای تهویه مطبوع نیاز دارند در حالیکه اقلیمهای سرد نیاز به حداکثر الکتریسیته در زمستان و برای پمپها و پنکههای سامانههای گرمایش و روشنایی دارند. معمولا جهت گیری مطلوب رو به جنوب میباشد با این حال تا ۲۰ درجه به سمت شرق یا غرب از جهت جنوب افت بسیار ناچیزی در سامانه وجود دارد با این وجود مقدار بارهای روزانه میتواند بر جهت گیری تاثیر گذارد.
فتوولتائیک یکپارچه ساختمان(Bipv)
فتوولتاییک(pv)امروزه میتواند در ساختمانهای موجود و جدید استفاده شود. کاربرد آن در پوشش ساختمان بسیار متنوع بوده و راههای جدیدی به سوی طراحان خلاق میگشاید. با توجه با این که منبع تغذیه سلولهای فتوولتائیک نور خورشید میباشد، لذا محل قرارگیری سلولها، جدارههایی از ساختمان است که زمینه مناسبی برای تابش مستقیم نور خورشید دارا باشند. از این رو محل استفاده تایلهای فتوولتائیک، غالباً نماهای بیرونی و سطوح خارجی بام ساختمان میباشد. سلولهای فتوولتائیک در شیشههایی به رنگهای مختلف ساخته میشوند، به طوری که مهندسان معمار میتوانندآنها را علاوه برکارکرد اصلی، برای زیباسازی ساختمانها نیز به کارگیرند. این سلولها این قابلیت را دارند که بین۸۰٪تا ۹۰٪نور خورشید را از خود عبور دهند. این کیفیت باعث میشود که پنجرههای مجهز به سلولهای خورشیدی بتوانند به خنک ماندن هوای داخل خانه در تابستان کمک کنند و علاوه بر زیبا نمودن نمای ساختمان، انرژی الکتریسیته مورد نیاز را تهیه کنند.
صفحات نمای ساختمان
نماها اکثریت سطح پوسته یک ساختمان را اشغال میکنند. در حقیقت یک نما نخستین احساس بصری از ساختمان را به بینندگان خود انتقال میدهد و معماران بنا نیز با استفاده از نما به بیان ایدهها و ترجمه خواستههای کارفرما با زبانی ویژه از شکل و رنگ میپردازند. مدولهای استاندارد فتوولتائیک میتوانند به دیوار موجود ساختمان برای تامین نمایی موفق به لحاظ زیبا شناختی متصل گردند. این واحدها بدون نیاز به عایق به استراکچر متصل میشوند که این عمل توسط زیرسازی شبکهای در مدولهای فتوولتائیک صورت میگیرد، بنابراین سیستمهای فتوولتائیک میتوانند به عنوان بخش مهمی از عناصر نمای ساختمان مطرح شوند. چهره اصلی یک لایه فتوولتائیک به عنوان مصالح پوششی، شبیه یک شیشه رنگی است. لایههای فتوولتائیک حفاظت طولانی مدت در برابر شرایط جوی را تامین و میتوانند در هر اندازه، شکل، طرح و رنگی، برش و تهیه شوند و حتی قسمتی از نور روز را نیز به داخل ساختمان برسانند. این عناصر ساختمانی میتوانند بعنوان صفحات ساده نما، عناصر چند عملکردی برای نماهای سرد و گرم، به عنوان سیستم سایه انداز یا بازشوعمل نمایند.
نماهای نیمه شفاف
ورقهای فتوولتائیک همانند پنجرهها میتوانند کارکرد شفافیت و پشت نمایی خود را از دو طریق انجام دهند. سلول فتوولتائیک به تنهایی میتواند بسیار ظریف و یا لیزری بوده و از این طریق ۲۰ تا ۵۰ درصد امکان دید فیلتر شدهای را فراهم کند. مدولهای سیلیکون غیر بلوری نیمه شفاف، ویژه این کارکرد، تهیه میشوند از سوی دیگر، سلولهای بلورین نیز در روشی مشابه میتواند در عین ایجاد فیلتر دید، فضای داخلی را روشن سازند. حتی با اضافه نمودن لایههایی از شیشه به واحد اصلی از فتوولتائیک نیمه شفاف، عایق حرارتی و صوتی نیز برای نیازهای ویژه ساختمان تامین میشود.
سیستمهای سایبان
در معماری امروز نیاز شدیدی برای سیستمهای سایه انداز در بازار ساختمان وجود دارد که منجر به استفاده وسیع از بازشوهای بزرگ و پردهها و یا سایبانهای دیگر میگردد. در این میان فتوولتائیکها با اشکال مختلفی میتوانند به عنوان سایبان در بالای پنجرهها و یا بخشی از سازه بام استفاده شوند، البته به شرطی که استفاده از این سایبانها منجر به تحمیل بار اضافی به سازه ساختمان نگردد. سیستمهای سایه انداز فتوولتائیک میتوانند به گونهای و در جهتی آرایش یابند که در آن واحد، هم برای تولید بیشترین انرژی و هم برای تامین درجات متغیری از سایه بکار روند.
مصالح بام
بامها برای فتوولتائیکها بسیار ایده آل میباشند. چرا که معمولاً عوامل سایه ساز در پشت بام بسیار کمتر از سطح زمین است و معمولاً بام، سطح بدون استفاده وسیعی را بدین منظور در اختیار میگذارد. یک بام شیبدار ایده آل برای فتوولتائیکها بامی است به سمت جنوب (در نیمکره شمالی) که زاویهای معادل عرض جغرافیایی±۱۵برای بهترین تولید انرژی داشته باشد. در این خصوص بامهای روبه جنوب شرقی و جنوب غربی نیز قابل قبولند. صفحات فتوولتائیک میتوانند بر پشت بام بناهای موجود نیز براحتی نصب گردند. یک روش زیبا برای استفاده از فتوولتائیکها در بام ساختمان، استفاده از تایلها یا توفال هایPVاست که امکان نصب راحت آنها را توسط یک پیمانکار بام نظیر تایلهای یا پوشالهای دیگر پشت بام میسر میسازد. بامهای مسطح نیز مزایایی همچون دسترسی مناسب و نصب آسان دارند. روش کلاسیک در این خصوص، چیدمان و آرایش واحدهای فتوولتائیک بر روی زیر ساختهای شبکهای آن و سپس نصب آنها بر روی بام میباشد. در این روش علاوه بر توجه ویژه در خصوص آرایش مدولها و نصب آنها که در بام شیبدار نیز صورت میگیرد، میبایست در مورد نیروی باد نیز تدابیر لازم اندیشیده شود. تجربیات و پیشرفتهای اخیر در این زمینه سبب سبکی، سهولت و سرعت استعمال این سیستمها گشته است. در حالت ایده آل سقفهای شیبدار بهترین گزینه برای نصب پانلها به شمار میروند. سقفهای دندانهای از سقفهای مسطح بهتر هستند، چرا که قسمتهایی از سقف که رو به شمال قرار کرفتهاند میتوانند جهت ورود نور به فضا مورد استفاده قرارگیرند. در حالی که سطح جنوبی دندانهها میتواند محلی برای نصب فتوولتاییکها باشد. پوشش با فتوولتاییک در سطح جنوبی همچنین میتواند با استفاده از پانلهای نیمه شفاف انجام پذیرد که هم موجب ورود نور به فضا شده و هم جریان الکتریسته تولید نماید. اگرپانلها همراه بدنه سقف طراحی شوند قطعاتی به شکل سفال خمیده و یا تایل میتوانند مورد استفاده قرار گیرند.
نورگیرها
ساختار نورگیرها معمولاً مزایای انتشار نور در ساختمان را با تامین سطحی باز برای نصب مدولهای فتوولتائیک نوام میسازد. در این صورت عناصر فتوولتائیک میبایست نور و الکتریسیته را همزمان تامین کنند. بطوریکه قطعات فتوولتائیک و سازه پشتیبان مورد استفاده برای این نوع کارکرد، مشابه نماهای نیمه شفاف هستند. این ساختار که میتواند از بیرون نیز نمایان گردد، طبقات و راهروهایی زیبا و جذاب از نور پدید آورده و امکان طرح معماری مهیجی از نور و سایه فراهم میسازد.
مزایای استفاده از سیستمهای فتوولتاییک
۱. فناوری فتوولتاییک بالغ، محکم و قابل اعتماد بوده، و هیچگونه اجزای متحرک نداشته و نیاز به نگهداری کمی دارد.
۲. به سوخت یا شبکه تأمین سوخت نیاز ندارد.
۳. نصب سیستم فتوولتاییک نسبتا آسان و سریع است، بخصوص سیستمهای متصل به شبکه.
۴. اجزاء مورد استفاده در سیستمهای فتوولتاییک طی استفادههای طولانی مدت، قابلیت اطمینان خود را ثابت کردهاند
۵. به اشعه ماوراء بنفش و آب و هوا مقاومند و تحمل دمای بالا را دارند.
۶. به صورت ماژولی هستند و سیستمها میتوانند در هر سایزی وجود داشته باشند.
۷. سیستم فتوولتاییک مستقل میتواند توان را تقریباً در هر نقطه از سیاره زمین تأمین کند.
۸. سیستم فتوولتاییک تشعشعات گاز گلخانهای و دی اکسید کربن را کاهش میدهد.
۹. سیستم فتوولتاییک عموماً آلودگی را کاهش میدهد.
۱۰. سیستم فتوولتاییک به حفاظت از منابع کمیاب کمک میکند.
۱۱. فتوولتاییک تقریباً در هر جایی، یک بازار به سرعت در حال رشد است که تجار تهای مختلف دیگر میتوانند خود را درگوشهای از آن جای دهند.
۱۲. عمر مفید بالایی دارد (بیش از ۲۰ سال)
فناوریهای مختلف سلولهای خورشیدی
سیستمهای فتوولتاییک که در حال حاضر به صورت صنعتی تولید میشوند، از نظر فناوری به دو دسته کلی سیلیکون کریستالی به عنوان فناوری نسل اول و فیلم-نازک به عنوان فناوری نسل دوم دستهبندی میگردد. سلولهای سیلیکون کریستالی به انواع مونوکریستالی، پلیکریستالی و کریستال نواری تقسیم میگردد. فناوریهای کلیدی و مهم فیلم-نازک را نیز میتوان شامل سیلیکون آمورف (a-Si)، میکروکریستالی، CIGS/CIS و CdTe دانست. نسل سوم سلولهای فتوولتاییک نیز که بیشتر در سطح آزمایشگاهی تولید میشوند و مراکز پژوهشی در حال توسعه آنها میباشند، به سلولهایی اطلاق میشود که توانایی عبور از حد Shockley-Queisser را دارند یعنی دارای بازده نامی بالاتر از ۳۲٪ میباشند. از انواع این سلولها میتوان به نانوسازههای سیلیکونی، مبدلهای Up/Down، سلولهایHot Carrier و سلولهای ترموالکتریک یا Hot Lattice اشاره کرد.
«کاربرد ابتکاری یافتههای یک رشتة علمی را در صنعت- یا در یک کار عملی- تکنولوژی میگویند.»با توجه به این تعریف، تکنولوژی آموزشی را چنین تعریف کردهاند:
«مجموعهای از معلومات ناشی از کاربرد علوم آموزشی و فراگیری در دنیای حقیقی کلاس درس، همراه با ابزارها و روشهایی که کاربرد علوم گفته شده در بالا را تسهیل میکند...»

علاوه بر تعریف فوق، از تکنولوژی آموزشی تعریفهای دیگری نیز شده است. تعریف زیر را که از سایر تعریفها جامع تر است، برای آگاهی آن دسته از علاقهمندان که به تازگی با مفهوم تکنولوژی آموزشی آشنا شدهاند، انتخاب کردهایم:
«تکنولوژی آموزشی عبارت است از روش سیستماتیک طراحی، اجرای و ارزشیابی کل فرایند تدریس و یادگیری که براساس هدفهای معین و یا بهره گیری از یافتههای روان شناسی یادگیری و علم ارتباطات و به کارگیری منابع مختلف- اعم از انسانی وغیر انسانی- به منظور آموزش مؤثرتر تنظیم واجرا می ش
مرحله اول – ابزار و وسایل
مرحله دوم - مواد آموزشی
مرحله سوم – نظامهای درسی
مرحله چهارم – نظامهای آموزشی
مرحله پنجم – نظامهای اجتماعی
تاسیس گرایش تکنولوژی آموزشی برای اولین باردر ایران، سال ۱۳۷۲
در یک قرن اخیر براساس تحولات به وقوع پیوسته در دیدگاههای معرفتشناسی، رویکردهای روانشناسی یادگیری و سایر علوم وابسته و مربوط به ارتباطات،سیستمها و تعلیم و تربیت،تعریف تکنولوژی آموزشی،دستخوش تحولات بنیادین شده است. این تعریف از«کاربرد وسایل و ابزار در آموزش»،به«طراحی،تولید،اجرا و ارزشیابی نظامهای آموزشی»و سرانجام به«نظریه و عمل طراحی،تهیه(تولید)،استفاده(کاربرد)، مدیریت و ارزشیابی فرایندها و منابع یادگیری».تغییر یافته است.بررسی تاریخچهء این رشته از علوم کاربردی در غرب که زادگاه آن است،نشان از تعامل صاحبنظران این علم با شرایط و اقتضائات محیطی و نیازها و جهتگیریهای نظامهای تربیتی آنان دارد، درحالیکه موقعیت این رشته در کشور ما ایران به منزله یک رشتهء علمی کاملاً وارداتی،همانند بسیاری از رشتههای دیگر دانشگاهی متفاوت است.به همین سبب برای بررسی تاریخ این رشته در ایران میباید در زوایای رخدادها و وقایع مرتبط با تعلیم و تربیت در پی نشانههای مربوط به جنبهای یا جوانبی از مباحث،کاربردها و محتواهای مرتبط با این رشته جستجو کرد تا اثری از آن یافت.در این نوشته بنا بر اهمت و تأثیرگذاری رویداد بسیار مهم تأسیس دارالفنون بررسی خود را از این نقطهء عطف تاریخی شروع میکنیم و با پیگیری رویدادهای آموزشی و فرهنگی کشورمان به خصوص از اول قرن چهاردهم هجری شمسی(مطابق با اوائل قرن بیستم میلادی)، سیر تحول شناخت،موقعیت و کاربرد رشته تکنولوژی آموزشی را دنبال میکنیم.این مطالعه بهخصوص بر وقایع معطوف به زمان پیش از شکلگیری رشتهء تکنولوژی آموزشی در حکم یک رشتهء تحصیلی دانشگاهی در سال 1372 و پس از این تاریخ متمرکز خواهد شد.بررسیها نشان میدهند که به دلیل رخدادهای بسیار مهم تاثیرگذاری،همچون نهضت مشروطه،جنگ جهانی اول،منازعات کشورهای استعماری در کشور ما برای کسب امتیازات،کودتای رضاخان،جنگ جهانی دوم، نهضمت ملی شدن نفت و سرانجام کودتای 28 مرداد 1332 و تبعات مخرب و نامبارک آن کشور ما عملاً پنجاه سال اول قرن بیستم میلادی که گسترهء ناب رشد و شکوفایی علوم در کشورهای غربی بوده را از دست داده است.این عقبماندگی موجب عدم رشد بسیاری از علوم در ایران شده و تکنولوژی آموزشی به عنوان یک رشته تحصیلی دانشگاهی و در حکم یک تخصص کاربردی در آموزش و پرورش و آموزش عالی کشورمان از آن جمله است.برداشتهای ناصواب از این رشته موجب پنهان ماندن ماهیت،فلسفه و محتوای آن برای بسیاری از دستاندرکاران آموزش و پرورش و رشته حیاتی در تعلیم و تربیت جهانی محروم ساخته است.در بخش پایانی این نوشته به چشمانداز این رشته در آینده در پرتو بررسیهای انجام شده خواهیم پرداخت.امید است که چنین بررسیهایی گرچه بسیار محدود و ناقص،بتوانند پرتوی فرا راه دانشپژوهان و علاقهمندان این رشته باشد.
در آبان ماه سال ۱۳۷۲برنامه کارشناسی علوم تربیتی گرایش تکنولوژی آموزشی برای اولین بار در شورای عالی برنامه ریزی وزارت فرهنگ وآموزش عالی به تصویب رسید. این برای اولین بار است که رشته تکنولوژی آموزشی در کشور ما به عنوان یک رشته رسمی دانشگاهی مطرح میشود. مروری بر دروس تخصصی مصوب این گرایش نشان میدهد که تمام تحولات رخ داده در دوره دوم رشته در غرب در این برنامه وجود دارد (مانند:درس اصول طراحی پیامهای اموزشی، آموزش با روش بر سیستمها، ارزیابی نظامهای کوچک آموزشی، جامعه شناسی ارتباطی، آموزش برنامهای، اصول طراحی نظامهای آموزشی). در آبان ماه سال ۱۳۷۴برنامه کارشناسی ارشد تکنولوژی آموزشی به تصویب شورای عالی برنامه ریزی رسید وابتدا در دانشگاه علامه طباطبایی وبه دنبال آن در دانشگاه تربیت معلم به اجرا در آمد. دروس تخصصی این برنامه نشان دهنده وارد شدن مباحث نظامهای آموزشی وطراحی آنها، در کنار توجه به رایانه به عنوا ن اصلی ترین رسانه بعد از تحولات مربوط به تکنولوژی ارتباط واطلاعات است (مانند :برنامه نویسی رایانهای برای آموزش، وتولید برنامههای رایانهای آموزشی) این توجه به رایانه مسلماً در کنار دروسی همچون طراحی آموزشی، اصول تهیه برنامههای آموزشی وطراحی مراکز یادگیری، جهت گیری صحیح طرح مباحث نرمافزاری در کنار ابزارهای الکترونیک رانشان میدهد. خاطره یاری. منبع:مبانی نظری تکنولوژی اموزشی دکتر هاشم فردانش
تاریخچه استفاده از ابزار و وسایل آموزشی در ایران
گرچه ممکن است کشورهای مختلف الزاماً از این مراحل گذر نکرده باشند ولی بیشتر کشورها با این مراحل روبرو بودهاند. در کشور ما از سال ۱۳۰۶ به بعد، بعضی از مدارس اقدام به ایجاد آزمایشگاههای فیزیک و شیمی و علوم زیستی کردند، اما نداشتن کادر متخصص، کمبود ابزار و وسایل و مواد مورد نیاز و عدم اعتقاد به کاربرد این وسایل و روشها، سبب عدم موفقیت این مراکز و راکد ماندن فعالیتهای آنان شد. در سال ۱۳۰۸ وزارت فرهنگ، اداره کل هنرهای زیبا را تاسیس کرد. این اداره علاوه بر نظارت بر کلیه فعالیتهای هنری، مسئولیت استفاده از وسایل سمعی و بصری مدارس را نیز عهدهدار بود. ایجاد آزمایشگاههای سمعی و بصری، دانشسرای مقدماتی و دانشسرای عالی نیز جزء فعالیتهای این اداره بود. در سال ۱۳۴۱ ادارهای به نام اداره آموزش فعالیتهای سمعی و بصری در وزارت فرهنگ تشکیل گردید که بعداً با نام دفتر آموزش سمعی و بصری فعالیتهای خود را ادامه داد. توجه به فیلم به عنوان یک رسانه آموزشی در سطح جهانی سبب گردید این اداره اقدام به تشکیل جشنوارههای بینالمللی فیلمهای آموزشی کند. تلویزیون آموزشی در سال ۱۳۴۳ زیر نظر وزارت آموزش و پرورش تاسیس شد و کار خود را بعد از دو سال، با پخش برنامههای درسی در زمینه فیزیک، شیمی، جبر، علوم طبیعی، زبان و دستور فارسی شروع کرد. هدف از پخش این برنامهها جبران کمبود معلمهای متخصص و جبران کمبود آزمایشگاهها بود، اما به علت عدم تطابق وقت آن با برنامه دبیران و مدارس پخش آن متوقف شد. در سال ۱۳۵۲ تهیه برنامههای آموزشی به سازمان رادیو و تلویزیون ملی ایران واگذار شد و برنامههای آموزشی با پخش دروس راهنمایی در سال ۱۳۵۳ مجدداً شروع به فعالیت کرد و همزمان حدود سه هزار دستگاه تلویزیون بین مدارس شهرهای بزرگ کشور توزیع شد. ولی برنامههای تلویزیون به دلیل عدم برنامهریزی صحیح و عدم انتشار اطلاعات درست مربوط به زمان پخش، منجر به شکست گردید. در سال ۱۳۵۳ دوره فوقلیسانس تکنولوژی آموزشی تاسیس شد. گرچه قبل از این سال در دروس لیسانس تربیت معلم و علوم تربیتی، دروسی با عنوانهای مقدمات تکنولوژی آموزشی، تولید و کاربرد مواد آموزشی یا نقش وسایل ارتباط جمعی در آموزش و پرورش گنجانده شده بود، اما در دوره فوقلیسانس دروسی از قبیل طراحی سیستمیک آموزشی، تهیه خودآموزها، روانشناسی تربیتی و یادگیری، آمار و سنجش نیز دیده میشود. مرحله بعدی تکنولوژی در ایران، ایجاد دانشکده مکاتبهای ابوریحان بیرونی برای آموزش کارکنان دولت و با تکیه بر آموزگاران تاسیس شد. نحوه آموزش در دانشکده مکاتبهای از طریق ارسال کتب و نوار شنیداری و گاه کلاس حضوری رفع اشکال بود. مرحله بعدی در ایران ایجاد دانشگاه آزاد ایران و دانشگاه پیام نور است که به نظر میرسد هدفشان همگانی کردن سطح آموزش باشد.
سیر تحول رشته تکنولوژی اموزشی در مغری زمین: سیر تحول رشته تکنولوژی اموزشی در مغرب زمین در یک قرن اخیر بر اساس تحولات به وقوع پیوسته در دیدگاههای معرفت شناسی، رویکردهای روانشناسی یادگیری و سایر علوم وابسته و مربوط به ارتباطات، سیستمها و تعلیم و تربیت، تعریف تکنولوژی آموزشی، دستخوش تحولات بنیادی شده است. قرن هجدهم و نوزدهم میلادی دوران شکوفایی و توسعه علمی همه جانبه مغرب زمین بود. در این دو قرن اکتشافات و اختراعات علمی در زمینه های گوناگون و ظهور نظریه پردازانی مانند روسو، یستالوزی، هربارت و فروبل در حوزه تعلیم و تربیت به وارد شدن علوم طبیعی در برنامه درسی مدارس منجر شد که این امر سبب سریعتر شدن رشد علمی و اجتماعی کشورهای غربی گردید. در نیمه دوم قرن نوزدهم آموزش و پرورش به مثابه یک علم اجتماعی جای خود را در میان سایر علوم باز کرد و دوره پیش از جنگ جهانی اول، امیدهای آموزشی تازه در سه جنبش جداگانه اما مرتبط به هم، به وقوع پیوست: جنبش مطالعه کودک، جنبش بررسی مدرسه و رشد مطالعات تجربی در آموزش و پرورش.
سیر تحول رشته تکنولوژی آموزشی در مغرب زمین
تاریخچه پیدایش و تحول رشته تکنولوژی آموزشی در غرب را می توان به سه دوره به شرح زیر تقسیم کرد: (فردانش، ۱۳۸۷،ص۲۱-۴۴).
۱. دوره اول از ابتدای قرن بیستم میلادی.
دوره دوم از اوائل دهه ۱۹۶۰ تا اواخر۱۹۸۰
دوره سوم از اوائل دهه ۱۹۹۰میلادی تا حال حاضر.
فلشزیگ(۱۹۹۸) تکنولوژی آموزشی را در سه دوره فوق چنین نامگذاری کرده است:
دوره اول تکنولوژی ابزاری که در این دوره رسانه ها ابزاری برای غنی کردن آموزش های سنتی اند.
دوره دوم تکنولوژی نظامها که در این دوره رسانه ها جزیی از نظامهای متشکل از انسان و ابزارند و برای آموزش عملکردهای خاص به کار می روند.
دوره سوم تکنولوژی فکورانه که دارای ویژگی های زیر است:
۱. به رسمیت شناختن انواع دانش حاصل از منابع علمی سنتی و تجربه
۲. مبتنی بودن بر دانش نظری و دانش عملی و مقدم دانستن دانش نظری بر عملی
۳. به کار گیری انواع دانش بر اساس یک دیدگاه ارزش شناسی مشخص
۴. فکورانه بودن به معنای تعمق کردن درباره تکنولوژی (بعد دانش و ارزش ها) و محصولات آن (بعد طرحها و مواد)
سهیلا92 منبع: مقدمات تکنولژی آموزشی دکتر خدیجه علی آبادی
تاریخچه پیدایش و تحول رشته تکنولوژی آموزشی را می توان از نظر زمانی به سه دوره مشخص تقسیم کرد : دوره اول : از اوایل قرن بیستم تا اواخر سالهای 1950 ( رویکرد اثبات گرایی – رفتار گرایی – تکنولوژی ابزاری ) دوره دوم : از اوایل سالهای 1960 تا اواخر سالهای 1980 ( رویکرد تعبیری – شناخت گرایی –تکنولوژی نظامها ) دوره سوم : از اوایل سالهای 1990 تا زمان حال ( رویکرد انتقادی – ساخت گرایی – تکنولوژی متفکرانه ) که در اینجا به شرح کامل دوره سوم از تاریخچه پیدایش و تحول تکنولوژی آموزشی میپردازیم . دوره سوم : رویکرد انتقادی – ساختگرایی – تکنولوژی متفکرانه : رویکرد انتقادی به زعم طرفدارانش به دنبال پر کردن فاصله بین رویکرد اثبات گرایی و رقیب آن یعنی رویکرد تعبیری یا تفسیری است و از رویکرد اثبات گرایی برای آنکه آن را تحویل گرایی می نامند و از رویکرد تعبیری برای آنکه نسبی گرایی ضمنی مستتر در دیدگاه معرفت شناسی است انتقاد کردند و زمینه را برای رشد رویکرد انتقادی فراهم آوردند . این رویکرد با جهت گیری های سیاسی خود به سلطه علم ، تکنولوژی و دیوان سالاری که از شاخصه های سرمایه داری است معترض و معتقد است که در این شرایط احتمال طرح سوال درباره هنجارها و ارزشهای اجتماعی و "زندگی خوب " در عرصه اجتماعی از بین می رود و بنابر این رویکرد انتقادی با طرح این سوالها که محور اصلی مباحث آن را تشکیل می دهد منجر به آزادی و رهایی افراد از عقاید نادرست و غلبه بر جور و ستم می شود . متفکران این رویکرد معتقدند که فلسفه باید در خدمت این مبارزه و جنبش اجتماعی قرار گیرد . صاحب نظران زیادی در رشته تعلیم وتربیت تحت تاثیر نظریه انتقادی قرار گرفتند و به جهت همخوانی برخی مبانی معرفت شناسی بنیادی خود بامکتب روانشناسی ساخت گرایی ، اغلب این رویکرد را در زمینه برنامه ریزی و آموزش مورد تاکید قرار دادند . ساخت گرایی نام خود را از کلمه ساخت یا ساختن اتخاذ کرده که منعکس کننده دیدگاه معرفت شناسانه آن است . ساخت گرایان معتقدند که ساختار دانش چیزی نیست که خارج از ذهن شاگرد وجود داشته باشد ، بلکه ساختار دانش حاصل تعامل مستمر با سازه های موجود و آزمایش و پالایش بازنماییهای ذهنی آن برای یافتن درک صحیح تری از جهان خارج است و بر این اساس فعالیت یادگیری باید محور توجه قرار گیرد نه فرایند آموزش . مهمترین پیش فرض معرفت شناسانه ساخت گرایی آن است که معنا ، تابعی از چگونگی ساختن آن بر اساس تجربه های فردی است . ساخت گرایان معتقدند که دانش در درون فرد و توسط او ساخته می شود و از منابع خارجی دریافت نمیشود .ساخت گرایان افراطی مانند گلیسرزفلد معتقدند که هیچ واقعیت عینی مستقل از فعالیت ذهنی انسان وجود ندارد . جهان فردی توسط ذهن خلق می شود و بنابراین هیچ جهانی واقعی تر از دیگری نیست .ساختن معنا بر بر تطابق آن با جهان خارج از ذهن مبتنی نیست ، بلکه به درک فرد از آن بستگی دارد . تمام ساخت گرایان معتقدند که ذهن موقعیتی ابزاری و اساسی برای تفسیر رویدادها ، اشیاء و دیدگاههای جهان خارج از ذهن دارد و این تفسیرها ، مبنای دانش فرد راکه شخصی و منحصربهفرد است تشکیل می دهد . .این رویکرد جدید باعث تغییرات اساسی در مباحث محوری اغلب رشته های تعلیم وتربیت و از آن جمله تکنولوژی آموزشی شد . عبور از رویکرد نظامهای آموزشی که به گفته رایگلوث دوره صنعتی در تکنولوژی آموزشی بود ، به دوره یا عصر اطلاعات به معنای تحول از مرحله تولید برنامه های آموزش معیار به مرحله خلق برنامه های آموزش طراحی شده برای تک تک فراگیران است . در این مرحله جدید طراحان به جای ایجاد نتایج یادگیری یکسان و از قبل تعیین شده برای تمام شاگردان ، به خلق تجارب یادگیری انحصاری برای هر یک از شاگردان می پردازند . زمینه ضروری چنین اقدامی ، پیشرفت سریع در تکنولوژیهای ارتباطات و رایانه است . تکنولوژیست های آموزشی برای طراحی برنامه های اموزشی به جای تاکید بر ساده سازی و یادگیریهای مبتنی بر توضیح و ارائه مستقیم باید بر زمینه های واقعی و ملموس تکیه کنند ، این امر موجب تحولات زیادی در مباحث رشته تکنولوژی آموزشی شده است . ماهیت و محتوای رشته تکنولوژی آموزشی در طول قرن بیستم ، سرانجام این رشته را در موقعیتی قرار داده است که با ورود و ادغام رویکردهای جدید به این رشته ، اینک به عنوان یک رشته علمی زنده و پویا در محافل تربیتی غرب حضور فعال دارد . از بارزترین خصوصیات این دوران که از آن با نام " پسامدرن " یاد می شود به گفته هلینکا و دنیس خصوصیت تکثر گرایی ، این زمانی بودن و پیچیدگی آن است که در مقابل خصوصیت جهانی بودن ، ثابت بودن و ساده بودن دوران نوگرایی خودنمایی می کند . دقیقاً به دلیل این خصوصیات ویژه است که در دوران پسامدرن تمام دیدگاههای هستی شناسی ، معرفت شناسی ، روانشناسی و روش شناسی در کنار هم و با درجه ای که ضرورت موقعیتهای واقعی آموزشی اقتضا میکند وجود دارد و ظهور و قدرت یافتن رویکرد ساخت گرایی در رشته تکنولوزی آموزشی منجر به نفی و کنار نهادن سایر دیدگاهها و رویکردها نشده است .A.moradian l منبع: فردانش، هاشم، مبانی نظری تکنولوژی آموزشی، سمت،1387 .
فتوولتاییک
فتوولتاییک (به انگلیسی: Photovoltaics) یا به اختصار PV، یکی از انواع سامانههای تولید برق از انرژی خورشیدی میباشد. در این روش با بکارگیری سلولهای خورشیدی، تولید مستقیم الکتریسیته از تابش خورشید امکانپذیر میشود. سلولهای خورشیدی از نوع نیمه رسانا میباشند که از سیلیسیوم یعنی دومین عنصر فراوان پوسته زمین ساخته میشوند. وقتی نور خورشید به یک سلول فتوولتاییک میتابد، بین دو الکترود منفی و مثبت اختلاف پتانسیل بروز کرده و این امر موجب جاری شدن جریان بین آنها میگردد. میتوان فتوولتایک را در دسته فناوریهای انرژیهای تجدید پذیر (نوشو) قرار داد.
انرژی خورشیدی
مقدار انرژی تابشی خورشید بر روی کره زمین ۶۰۰۰ برابر کل مصرف انرژیهای سالیانه بر روی زمین است که این مطلب نشان دهنده اهمیت توجه به این منبع در تامین نیازهای روزمره بشر است. اگر تا به حال انرژی خورشیدی رقیبی جدی برای سوختهای فسیلی محسوب نمیشده است، به دلیل پایین بودن تاریخی قیمت سوختهای فسیلی بوده است. اگر چه هنوز هم فناوری استفاده از انرژی خورشیدی به بلوغ خود نرسیده است، اما رسیدن به این تکامل نزدیک است. بسیاری از کشورهای جهان در تلاشند تا با جایگزینی انرژی خورشیدی در تولید حرارت و الکتریسیته حداکثر استفاده از این منبع انرژی را به دست آورده و زیانهای ناشی از مصرف سوختهای فسیلی را کاهش دهند.
تاریخچه فتوولتاییک
عبارت فتوولتاییک "Photovoltaic" ترکیـبی از کلمه یونانی "Photos" به معنی نور با "Volt" به معنای تولید الکتریسیته از نور است. کشف پدیده فتوولتاییک به فیزیکدان فرانسوی Edmond Becquerel نسبت داده میشود که در سال ۱۸۳۹ با چاپ مقالهای (Becquerel، ۱۸۳۹) تجربیات خود را با باتریتر (Wet Cell) ارائه نمود. او مشاهده نمود که ولتاژ باتری وقتی که صفحات نقرهای آن تحت تابش نور خورشید قرار میگیرند، افزایش نمی یابد .
اما اولین گزارش از پدیده PV در یک ماده جامد در سال ۱۸۷۷ بود وقتیکه دو دانشمند کمبریج R.E. Day و W.G.Adams در مقالهای به انجمن سلطنتی تغییراتی که در خواص الکتریکی سلنیوم وقتی که تحت تابش نور قرار میگیرد را، توضیح دادند (Adams and Day، ۱۸۷۷).
در سال ۱۸۸۳ Charles Edgar Fritts که یک مهندس برق اهل نیویورک بود، یک سلول خورشیدی سلنیومی ساخت که از برخی جهات شبـیه به سلـولهای خورشیـدی سیلیکونی امروزی بود. این سلـول از یک ویفـر نازک سلنیوم تشکیل شده بود که با یک توری از سیـمهـای خیلی نازک طلا و یک ورق حفاظتی از شیشه پوشانده شده بود. اما سلول ساخت او خیلی کم بازده بود. بازده یک سلول خورشیدی عبارت از درصدی از انرژی خورشیدی تابیده به سطح آن میباشد که به انرژی الکتریکی تبدیل شده باشد. کمتر از ٪۱ انرژی خورشیدی تابیده شده به سطح این سلول ابتدایی به الکتریسیته تبدیل میشد. با وجود این، سلولهای سلنیومی سرانجام در نورسنجهای عکاسی به طور وسیعی بکار گرفته شد.
سلولهای خورشیدی (فتوولتاییک)
عنصر اصلی فناوری فتوولتاییک، سلول خورشیدی است. سلولهای فتوولتاییک (PV) که عموم آن را با نام سلولهای خورشیدی میشناسند، از مواد نیمه رسانای حالت جامد تشکیل شدهاند. سیلیکون، عمومیترین ماده نیمه رسانا است که به واسطهٔ فراوانی آن در سلولهای PV مورد استفاده قرار میگیرد. اگر چه سلیکون عنصر فراوانی است و درصد زیادی از پوسته زمین را تشکیل میدهد، ولی سلولهای سیلیکونی به خاطر فرایند ساخت و خالص سازی سیلیکون، قیمت بالایی دارند.
سلو لهای فتوولتائیک با استفاده از اشعه خورشید و سلو لهای خورشیدی، و با ایجاد اختلاف فشار الکتریکی در نیمه هادیهایی که بطور مناسب ساخته شدهاند الکتریسیته تولید میشود. امروزه موثرترین و ارزان ترین سلو لهای خورشیدی مادهای به نام سیلیسم میباشد. ماسه یکی از منابع مهم سیلیسم بوده که پس از پالایش آن کریستالهای سیلیسم بدست میآید و پس از بریده شدن به صورت صفحه آماده میشود. به عبارت دیگر سلولهای فتوولتائیک که گاه نام سلولهای خورشیدی نیز به آن اطلاق میگردد از پولکهایی ساخته میشوند که نور را مستقیماً به الکتریسیته تبدیل میکند. این پولکها همانند ترانزیستور معمولا از لایههای نازک یک ماده نیمه هادی مانند سیلیکان با مقادیر کمی افزودنیهای خاص به منظور ایجاد مازادی از الکترون در یک لایه و کمبودی از الکترون در لایه دیگر ساخته میشوند. فوتونهای نور در یک لایه الکترو نهای آزاد را بوجود میآورند و یک رشته هادی، الکترونها را قادر میسازد که در یک مدار خارجی جریان یافته و به لایههایی که فاقد الکترون است دسترسی پیدا کنند. پنلهای فتوولتائیک از نیمه هادیها ساخته شده و با اتصال سیلیکونهای نوعP و N شکل میگیرند. وقتی نور خورشید به یک سلول فتوولتائیک میتابد، به الکترونها در آن انرژی بیشتری میبخشد. با تابش نور خورشید الکترونها در نیمه هادی پلاریزه شده، الکترونهای منفی در سیلیکون نوعN و یونهای مثبت در سلیکون نوعP بوجود میآیند. بدین ترتیب بین دوالکترود، اختلاف پتانسیل بروز کرده و این امر موجب جاری شدن جریان بین آنها میشود. از آنجا که سلو لهایPV کوچک، شکننده بوده و تنها مقدار کمی برق تولید میکنند آنها را به صورت مدول شکل میدهند. مدو لها در اندازههای متنوع عرضه میگردند ولی برای سهولت جابجایی ابعاد آنها به ندرت از ۹۰ سانتیمتر عرض در ۱۵۰ سانتیمتر طول تجاوز میکند. هنگامی که دو سلول با مدول در یک ردیف متصل میگردند ولتاژ آ نها دو برابر میشود و هنگامی که بصورت موازی به یکدیگر متصل میشوند جریان برق آن دو برابر میگردد.
انواع سامانههای فتوولتاییک
دو نوع اصلی از سامانههای فتوولتائیک (PV)برای استفاده در ساختمانها وجود دارد: منفرد و متصل به شبکه. هنگامی که اتصال به شبکه برق ممکن نبوده و یا مورد دلخواه نباشد نیاز به یک سامانه منفرد میباشد. در چنین مواردی برای تأمین برق به هنگام شب و یا در روزهای ابری و نیز هنگام نیاز به حداکثر مقدار برق نیاز به چند انباره میباشد. اندازه آرایه هایPVطوری تنظیم میشود که هم بارهای معمول روز هنگام و هم شارژ انبارهها را مهار کنند. در یک سامانه متصل به شبکه، برای تغییر جریان مستقیم از آرایهPVبه جریان متناوب (AC)با ولتاژ مناسب شبکه نیاز به یک مبدل میباشد. باید توجه داشت که در این حالت نیازی به انباره وجود ندارد و بدین ترتیب صرفه جویی قابل توجهی هم در هزینه و هم در نگهداری سامانه، ایجاد خواهد شد. در سامانههای منفرد، الکتریسیته مازادی که در طول روز تولیده شده است برای استفاده در شب و یا روزهای تاریک و ابری در انبارهها ذخیره میگردد. از آنجا که قیمت مبدلها و سلولها و انباره گران میباشد، یک سامانه ترکیبی (هیبریدی) که از نیروی باد استفاده میکند اغلب مکمل ایده آل برای سامانهPV میباشد چرا که نه تنها در طول شب باد میوزد بلکه در هوای بد نیز معمولاً باد قابل توجهی وجود دارد. علاوه بر آن در زمستان، زمانی که انرژی خورشیدی کمی برای برداشت وجود دارد هوا معمولا باد خیزتر ازتابستان میباشد. با این حال تمام مناطق برای استفاده از نیروی باد مناسب نیستند.
جهت گیری پنلهای فتوولتائیک
حداکثر جمعآوری امواج تابشی خورشید زمانی اتفاق میافتد که گردآور (کلکتور)، عمود بر پرتوهای تابش مستقیم باشد. از آنجا که خورشید هم به صورت روزانه و هم سالانه حرکت میکند تنها یک گردآور لولایی دو محوری میتواند میزان جذب را در طول سال به حداکثر برساند. با این حال گردآورهای لولایی تنها در اقلیمهای خشک که اکثرا دارای پرتوهای تابشی مستقیم میباشند میتواند برتری داشته باشد و حتی در آنجا نیز ۱۰ تا ۲۰ درصد امواج تابشی خورشید به صورت پخشی است. در اکثر اقلیمهای آفتابی و مرطوب، حدود یک دوم امواج تابشی خورشید مستقیم میباشد در حالیکه در اقلیمهای ابری ۸۰٪ یا بیشتر از امواج تابشی، پخشی میباشد. در صورت یکپارچگی با ساختمان نیز میبایست جهتگیری و زاویه مناسبی را مورد توجه قرار داد. بهترین زوایه برای یک آرایهPVاساساً تابع زمانی از سال است که بیشترین مقدار برق در آن مورد نیاز میباشد. اقلیمهای گرم بیشترین الکتریسیته را در طول تابستان و برای تهویه مطبوع نیاز دارند در حالیکه اقلیمهای سرد نیاز به حداکثر الکتریسیته در زمستان و برای پمپها و پنکههای سامانههای گرمایش و روشنایی دارند. معمولا جهت گیری مطلوب رو به جنوب میباشد با این حال تا ۲۰ درجه به سمت شرق یا غرب از جهت جنوب افت بسیار ناچیزی در سامانه وجود دارد با این وجود مقدار بارهای روزانه میتواند بر جهت گیری تاثیر گذارد.
فتوولتائیک یکپارچه ساختمان(Bipv)
فتوولتاییک(pv)امروزه میتواند در ساختمانهای موجود و جدید استفاده شود. کاربرد آن در پوشش ساختمان بسیار متنوع بوده و راههای جدیدی به سوی طراحان خلاق میگشاید. با توجه با این که منبع تغذیه سلولهای فتوولتائیک نور خورشید میباشد، لذا محل قرارگیری سلولها، جدارههایی از ساختمان است که زمینه مناسبی برای تابش مستقیم نور خورشید دارا باشند. از این رو محل استفاده تایلهای فتوولتائیک، غالباً نماهای بیرونی و سطوح خارجی بام ساختمان میباشد. سلولهای فتوولتائیک در شیشههایی به رنگهای مختلف ساخته میشوند، به طوری که مهندسان معمار میتوانندآنها را علاوه برکارکرد اصلی، برای زیباسازی ساختمانها نیز به کارگیرند. این سلولها این قابلیت را دارند که بین۸۰٪تا ۹۰٪نور خورشید را از خود عبور دهند. این کیفیت باعث میشود که پنجرههای مجهز به سلولهای خورشیدی بتوانند به خنک ماندن هوای داخل خانه در تابستان کمک کنند و علاوه بر زیبا نمودن نمای ساختمان، انرژی الکتریسیته مورد نیاز را تهیه کنند.
صفحات نمای ساختمان
نماها اکثریت سطح پوسته یک ساختمان را اشغال میکنند. در حقیقت یک نما نخستین احساس بصری از ساختمان را به بینندگان خود انتقال میدهد و معماران بنا نیز با استفاده از نما به بیان ایدهها و ترجمه خواستههای کارفرما با زبانی ویژه از شکل و رنگ میپردازند. مدولهای استاندارد فتوولتائیک میتوانند به دیوار موجود ساختمان برای تامین نمایی موفق به لحاظ زیبا شناختی متصل گردند. این واحدها بدون نیاز به عایق به استراکچر متصل میشوند که این عمل توسط زیرسازی شبکهای در مدولهای فتوولتائیک صورت میگیرد، بنابراین سیستمهای فتوولتائیک میتوانند به عنوان بخش مهمی از عناصر نمای ساختمان مطرح شوند. چهره اصلی یک لایه فتوولتائیک به عنوان مصالح پوششی، شبیه یک شیشه رنگی است. لایههای فتوولتائیک حفاظت طولانی مدت در برابر شرایط جوی را تامین و میتوانند در هر اندازه، شکل، طرح و رنگی، برش و تهیه شوند و حتی قسمتی از نور روز را نیز به داخل ساختمان برسانند. این عناصر ساختمانی میتوانند بعنوان صفحات ساده نما، عناصر چند عملکردی برای نماهای سرد و گرم، به عنوان سیستم سایه انداز یا بازشوعمل نمایند.
نماهای نیمه شفاف
ورقهای فتوولتائیک همانند پنجرهها میتوانند کارکرد شفافیت و پشت نمایی خود را از دو طریق انجام دهند. سلول فتوولتائیک به تنهایی میتواند بسیار ظریف و یا لیزری بوده و از این طریق ۲۰ تا ۵۰ درصد امکان دید فیلتر شدهای را فراهم کند. مدولهای سیلیکون غیر بلوری نیمه شفاف، ویژه این کارکرد، تهیه میشوند از سوی دیگر، سلولهای بلورین نیز در روشی مشابه میتواند در عین ایجاد فیلتر دید، فضای داخلی را روشن سازند. حتی با اضافه نمودن لایههایی از شیشه به واحد اصلی از فتوولتائیک نیمه شفاف، عایق حرارتی و صوتی نیز برای نیازهای ویژه ساختمان تامین میشود.
سیستمهای سایبان
در معماری امروز نیاز شدیدی برای سیستمهای سایه انداز در بازار ساختمان وجود دارد که منجر به استفاده وسیع از بازشوهای بزرگ و پردهها و یا سایبانهای دیگر میگردد. در این میان فتوولتائیکها با اشکال مختلفی میتوانند به عنوان سایبان در بالای پنجرهها و یا بخشی از سازه بام استفاده شوند، البته به شرطی که استفاده از این سایبانها منجر به تحمیل بار اضافی به سازه ساختمان نگردد. سیستمهای سایه انداز فتوولتائیک میتوانند به گونهای و در جهتی آرایش یابند که در آن واحد، هم برای تولید بیشترین انرژی و هم برای تامین درجات متغیری از سایه بکار روند.
مصالح بام
بامها برای فتوولتائیکها بسیار ایده آل میباشند. چرا که معمولاً عوامل سایه ساز در پشت بام بسیار کمتر از سطح زمین است و معمولاً بام، سطح بدون استفاده وسیعی را بدین منظور در اختیار میگذارد. یک بام شیبدار ایده آل برای فتوولتائیکها بامی است به سمت جنوب (در نیمکره شمالی) که زاویهای معادل عرض جغرافیایی±۱۵برای بهترین تولید انرژی داشته باشد. در این خصوص بامهای روبه جنوب شرقی و جنوب غربی نیز قابل قبولند. صفحات فتوولتائیک میتوانند بر پشت بام بناهای موجود نیز براحتی نصب گردند. یک روش زیبا برای استفاده از فتوولتائیکها در بام ساختمان، استفاده از تایلها یا توفال هایPVاست که امکان نصب راحت آنها را توسط یک پیمانکار بام نظیر تایلهای یا پوشالهای دیگر پشت بام میسر میسازد. بامهای مسطح نیز مزایایی همچون دسترسی مناسب و نصب آسان دارند. روش کلاسیک در این خصوص، چیدمان و آرایش واحدهای فتوولتائیک بر روی زیر ساختهای شبکهای آن و سپس نصب آنها بر روی بام میباشد. در این روش علاوه بر توجه ویژه در خصوص آرایش مدولها و نصب آنها که در بام شیبدار نیز صورت میگیرد، میبایست در مورد نیروی باد نیز تدابیر لازم اندیشیده شود. تجربیات و پیشرفتهای اخیر در این زمینه سبب سبکی، سهولت و سرعت استعمال این سیستمها گشته است. در حالت ایده آل سقفهای شیبدار بهترین گزینه برای نصب پانلها به شمار میروند. سقفهای دندانهای از سقفهای مسطح بهتر هستند، چرا که قسمتهایی از سقف که رو به شمال قرار کرفتهاند میتوانند جهت ورود نور به فضا مورد استفاده قرارگیرند. در حالی که سطح جنوبی دندانهها میتواند محلی برای نصب فتوولتاییکها باشد. پوشش با فتوولتاییک در سطح جنوبی همچنین میتواند با استفاده از پانلهای نیمه شفاف انجام پذیرد که هم موجب ورود نور به فضا شده و هم جریان الکتریسته تولید نماید. اگرپانلها همراه بدنه سقف طراحی شوند قطعاتی به شکل سفال خمیده و یا تایل میتوانند مورد استفاده قرار گیرند.
نورگیرها
ساختار نورگیرها معمولاً مزایای انتشار نور در ساختمان را با تامین سطحی باز برای نصب مدولهای فتوولتائیک نوام میسازد. در این صورت عناصر فتوولتائیک میبایست نور و الکتریسیته را همزمان تامین کنند. بطوریکه قطعات فتوولتائیک و سازه پشتیبان مورد استفاده برای این نوع کارکرد، مشابه نماهای نیمه شفاف هستند. این ساختار که میتواند از بیرون نیز نمایان گردد، طبقات و راهروهایی زیبا و جذاب از نور پدید آورده و امکان طرح معماری مهیجی از نور و سایه فراهم میسازد.
مزایای استفاده از سیستمهای فتوولتاییک
۱. فناوری فتوولتاییک بالغ، محکم و قابل اعتماد بوده، و هیچگونه اجزای متحرک نداشته و نیاز به نگهداری کمی دارد.
۲. به سوخت یا شبکه تأمین سوخت نیاز ندارد.
۳. نصب سیستم فتوولتاییک نسبتا آسان و سریع است، بخصوص سیستمهای متصل به شبکه.
۴. اجزاء مورد استفاده در سیستمهای فتوولتاییک طی استفادههای طولانی مدت، قابلیت اطمینان خود را ثابت کردهاند
۵. به اشعه ماوراء بنفش و آب و هوا مقاومند و تحمل دمای بالا را دارند.
۶. به صورت ماژولی هستند و سیستمها میتوانند در هر سایزی وجود داشته باشند.
۷. سیستم فتوولتاییک مستقل میتواند توان را تقریباً در هر نقطه از سیاره زمین تأمین کند.
۸. سیستم فتوولتاییک تشعشعات گاز گلخانهای و دی اکسید کربن را کاهش میدهد.
۹. سیستم فتوولتاییک عموماً آلودگی را کاهش میدهد.
۱۰. سیستم فتوولتاییک به حفاظت از منابع کمیاب کمک میکند.
۱۱. فتوولتاییک تقریباً در هر جایی، یک بازار به سرعت در حال رشد است که تجار تهای مختلف دیگر میتوانند خود را درگوشهای از آن جای دهند.
۱۲. عمر مفید بالایی دارد (بیش از ۲۰ سال)
فناوریهای مختلف سلولهای خورشیدی
سیستمهای فتوولتاییک که در حال حاضر به صورت صنعتی تولید میشوند، از نظر فناوری به دو دسته کلی سیلیکون کریستالی به عنوان فناوری نسل اول و فیلم-نازک به عنوان فناوری نسل دوم دستهبندی میگردد. سلولهای سیلیکون کریستالی به انواع مونوکریستالی، پلیکریستالی و کریستال نواری تقسیم میگردد. فناوریهای کلیدی و مهم فیلم-نازک را نیز میتوان شامل سیلیکون آمورف (a-Si)، میکروکریستالی، CIGS/CIS و CdTe دانست. نسل سوم سلولهای فتوولتاییک نیز که بیشتر در سطح آزمایشگاهی تولید میشوند و مراکز پژوهشی در حال توسعه آنها میباشند، به سلولهایی اطلاق میشود که توانایی عبور از حد Shockley-Queisser را دارند یعنی دارای بازده نامی بالاتر از ۳۲٪ میباشند. از انواع این سلولها میتوان به نانوسازههای سیلیکونی، مبدلهای Up/Down، سلولهایHot Carrier و سلولهای ترموالکتریک یا Hot Lattice اشاره کرد.
سندرم ديسترس تنفسي حاد (ARDS) يک بيماري سريعا پيشرونده است که در ابتدا با
تنگي نفس، تاکي پنه، و هيپوکسمي تظاهر ميکند و سپس به سرعت به سمت نارسايي
تنفسي پيش ميرود.کنفرانس اجماع عمومي آمريکايي - اروپايي (AECC) معيارهاي
تشخيصي براي ARDS منتشر کرده: شروع حاد، نسبت فشار نسبي اکسيژن شرياني به درصد
اکسيژن استنشاق شده (PaO2/FiO2) برابر با200 يا کمتر، بدون در نظر گرفتن فشار
مثبت در پايان بازدم(PEEP); ارتشاح دو طرفه در راديوگرافي فرونتال قفسه سينه و
فشار گوه اي شريان ريوي برابر با 18 ميليمتر جيوه يا کمتر يا عدم وجود شواهد
باليني ازفشار بالاي دهليزچپ. آسيب حاد ريه، سندرمي است که مختصري از شدت کمتري
برخوردار است و با هيپوکسمي خفيفتر ولي معيارهاي تشخيصي ديگر مشابه با ARDS
مشخص ميشود. از آنجا که بيش از نيمي از واحدهاي مراقبتهاي ويژه (ICUs) در
ايالات متحده داراي متخصص مراقبتهاي ويژه نيستند، بسياري از پزشکان مراقبتهاي
اوليه، مسوول ارايه مراقبت از بيماران مبتلا به ARDS يا آسيب حاد ريه هستند.

پاتوفيزيولوژي
پاتوفيزيولوژي ARDS به طور کامل شناخته نشده است. اعتقاد بر اين است که در ابتدا، يک آسيب مستقيم ريوي يا غيرمستقيم خارج ريوي، منجر به تکثير واسطههاي التهابي ميشود که اين واسطهها باعث تجمع نوتروفيلها در ميکروسيرکولاسيون ريه ميشوند. اين نوتروفيلها فعال شده به تعداد زياد از سطوح اندوتليال عروق و اپيتليال آلوئولار مهاجرت ميکنند و پروتئازها، سيتوکينها و گونههاي فعال اکسيژن را آزاد ميکنند. مهاجرت و آزاد شدن واسطهها منجر به نفوذپذيري پاتولوژيک عروق، شکاف در سد اپيتليال آلوئولار و نکروز سلولهاي آلوئولي نوع I و II ميشود. اين فرايند منجر به ادم ريه، تشکيل غشاء هياليني و از دستدادن سورفاکتانت ميشود که سبب کاهش کمپليانس ريوي شده، تبادل هوا را دشوار ميکند. ارتشاح بعدي فيبروبلاستها ميتواند منجر به رسوب کلاژن، فيبروز، و بدتر شدن بيماري شود. شکل 1 راديوگرافي يک بيمار مبتلا به ARDS ميباشد که کدورت فضاهاي هوايي دو طرفه را نشان ميدهد که از اين فرآيند نتيجه شده است.
اقدامات متعددي به طور همزمان در فرايند بهبود رخ ميدهد. سيتوکينهاي ضدالتهابي نوتروفيلهاي آسيب رسان را غيرفعال ميکنند و سپس نوتروفيلها دچار آپوپتوز و فاگوسيتوز قرار ميشوند. سلولهاي آلوئولي نوع دو تکثير شده و به سلولهاي نوع يک تمايز مييابند که سبب برقراري مجدد يکپارچگي در پوشش اپيتليال و ايجاد گراديان اسمزي ميشوند. اين گراديان اسمزي سبب به خارج کشيده شدن مايع از آلوئولها و ورود آن به ميکروسيرکولاسيون و لنفاتيکهاي ريه ميشود. به طور همزمان، ماکروفاژها و سلولهاي آلوئولي، ترکيبات پروتئيني را از آلوئولها برميدارند و به ريهها اجاره ميدهند تا بهبود يابند.
عوامل خطر و ميزان بروز
در بزرگسالان اغلب موارد ARDS با سپسيس ريوي (46%) يا سپسيس غير ريوي (33%) همراهي دارد. عوامل خطر اين بيماري عبارتند ازعواملي که باعث آسيب مستقيم ريه ميشوند (مثل پنوموني، آسيب استنشاقي، کوفتگي ريه) وعواملي که آسيب غيرمستقيم ريه ميشوند (مثل سپسيس غير ريوي، سوختگيها، آسيب حاد ريه ناشي از تزريق خون). عوامل خطر در کودکان مشابه بزرگسالان است به علاوه اختلالات مرتبط با سن خاص، مانند عفونت با ويروس سنسيشيال تنفسي و آسيب ناشي از آسپيراسيون حالت نزديک به غرقشدگي. جدول 1 شامل علايم و نشانههاي بيانگر علل خاص ARDS است.
مطالعات اخير نشان ميدهند که در بزرگسالان ميزان بروز آسيب حاد ريه 86-22 مورد در هر 100.000 فرد- سال و ARDS تا 64 مورد در هر 100.000 فرد- سال است. يک کارآزمايي بزرگ آيندهنگر اروپايي تخمين زده است که 1/7% از بيماران بستري در ICU و 1/16% از تمام بيماران تحت تهويه مکانيکي دچار آسيب حاد ريه يا ARDS ميشوند. ميزان مرگومير داخل بيمارستاني اين شرايط بين 55% و 34% تخمين زده ميشود. عوامل خطر مرگومير شامل افزايش سن، بدتر شدن اختلال عملکرد چند عضوي پيشرونده، وجود بيماريهاي ريوي و غيرريوي، امتياز بالاتر در APACHE II و اسيدوز است. اکثر موارد مرگومير مربوط به ARDS به علت نارسايي چند عضوي است. هيپوکسمي مقاوم به درمان تنها مسوول 16% از مرگومير مرتبط با ARDS است.
در کودکان ARDS کمتر رايج است و کمتر احتمال دارد که منجر به مرگ شود. در مطالعهاي در سال 2009 در بيماران 6 ماه تا 15 سال نشان داده شد که ميزان بروز آسيب حاد ريه و ARDS به ترتيب 5/9 و 8/12 در هر 100.000 نفر – سال بود و مجموع مرگومير داخل بيمارستاني آنها 18% بود.
تشخيصهاي افتراقي
از آنجا که علايم اوليه ARDS غيراختصاصي هستند، پزشکان بايد ساير علل تنفسي، قلبي، عفوني و سمي را در نظر بگيرند (جدول 2). شرح حال بيمار (به عنوان مثال بيماريهاي همراه، مواجههها، داروها) همراه با يک معاينه فيزيکي با تمرکز بر روي سيستم تنفسي و قلبي - عروقي ميتواند در محدود کردن تشخيصهاي افتراقي و تعيين دوره مطلوب درمان کمک کند.
اغلب، ARDS بايد از نارسايي احتقاني قلب و پنوموني افتراق داده شود (جدول 3). نارسايي احتقاني قلب با اضافه بار مايع مشخص ميشود، در حالي که بيماران مبتلا به ARDS بر اساس تعريف نشانههاي پرفشاري دهليز چپ و يا افزايش حجم واضح را ندارند. بيماران مبتلا به نارسايي احتقاني قلب ممکن است ادم، اتساع وريد ژوگولار، صداي سوم قلب، افزايش سطح پپتيد ناتريورتيک مغزي (BNP) و دفع نمک در پاسخ به ديورتيک داشته باشند. انتظار نميرود بيماران مبتلا به ARDS اين يافتهها را داشته باشند.
از آنجا که پنوموني يکي از علل عمده ARDS است، تشخيص بيماران مبتلا به پنوموني بدون عارضه از کساني که پنوموني عارضهدار شده با ARDS دارند سبب چالش تشخيصي بيشتري ميشود. به طور کلي، يک بيمار مبتلا به پنوموني بدون عارضه ممکن است نشانههايي از التهاب سيستميک و ريوي داشته باشد (به عنوان مثال، تب، لرز، خستگي، توليد خلط، درد قفسه سينه پلورتيک و ارتشاح موضعي يا چند کانوني)؛ هيپوکسي همراه بايد به تجويز اکسيژن پاسخ دهد. اگر هيپوکسي با تجويز اکسيژن اصلاح نشود، بايد به ARDS مشکوک شد و آن را بر اساس معيارهاي تشخيصي AECC اثبات نمود. در افراد مبتلا به پنوموني و ARDS همزمان، درمان شامل آنتيبيوتيکها و تهويه مکانيکي است.
درمان و پشتيباني
درمان ARDS حمايتي است از جمله تهويه مکانيکي، جلوگيري از استرس اولسر و ترومبوآمبولي وريدي، و حمايت تغذيهاي. جدول 4 درمان ARDS را به صورت خلاصه نشان داده است.
تهويه مکانيکي
بيشتر بيماران با ARDS نياز به آرام بخش، لولهگذاري و تهويه همزمان با درمان بيماري زمينهاي دارند. بر اساس دستورالعمل باليني موسسه ملي قلب، ريه و خون (Net ARDS) هر مد ونتيلاتور ممکن است استفاده شود. سرعت تنفس ، زمان بازدم، فشار مثبت پايان بازدمي و FiO2، مطابق با پروتکلهاي ARDSNet تنظيم ميشوند. تنظيمات به گونهاي اعمال ميشوند که اشباع اکسيژن شرياني 95% - 88% و فشار کفهاي (plateau) 30 سانتيمتر آب يا کمتر (براي جلوگيري از باروتروما) حفظ شود. دستورالعملهاي درمان باليني توصيه به حفظ pH شرياني از 45/7 -30/7 دارند اگر چه بيماران در برخي از کارآزماييهاي تحقيقاتي هيپرکاپنه کنترل شده و pH تا 15/7 را نيز تحمل کردهاند.
شواهد نشان داده است که شروع با حجم جاري کم به ميزان 6 ميليليتر به ازاي هر کيلوگرم نسبت به شروع با حجمهاي جاري معمول 15 - 10 ميليليتر به ازاي هر کيلوگرم برتري دارد (تعداد مورد نياز براي درمان [NNT] = 4/11). به طور مشابه، فشار مثبت پايان بازدمي بالاتر(12 سانتيمتر H2O يا بيشتر) در مقايسه با مقادير پايينتر در حد 12-5 سانتيمتر H2O با کاهش مرگومير همراهي دارد (NNT = 20). مايع درماني محافظه کارانه (براي پايين نگهداشتن فشار مرکزي) با کاهش تعداد روزهاي تحت درمان با ونتيلاتور و افزايش روزهاي خارج ICU همراهي دارد. با توجه به عوارض بالقوه کاتترهاي شريان ريوي و وريد مرکزي از آنها به طور معمول استفاده نميشود و تنها بايد توسط افراد آموزش ديده و با تجربه استفاده شود.
درمان هاي دارويي
گزينههاي دارويي براي درمان ARDS محدود است. هر چند درمان با سورفاکتانت ممکن است در کودکان مبتلا به ARDS مفيد باشد، يک مرور کاکرين سودمندي آن را در بزرگسالان نشان نداد. استفاده از کورتيکواستروييدها بحث برانگيز است. مطالعات شاهددار تصادفيشده و مطالعات همگروهي از استفاده زودرس از کورتيکواستروييدها براي کاهش تعداد روزهاي تحت درمان با ونتيلاتور حمايت ميکنند (با دوز متيل پردنيزولون در محدوده 120 - 1 ميليگرم به ازاي هر کيلوگرم در روز). با اين حال، هيچگونه سودمندي قطعي از جهت مرگومير براي اين درمان نشان داده نشده است. زماني که استفاده از کورتيکواستروييدها مدنظر باشد بايد با يک متخصص مراقبتهاي ويژه مشورت شود.
علاوه بر اقدامات تهويهاي، بيماران مبتلا به ARDS بايد هپارين با وزن مولکولي کم (40 ميليگرم انوکساپارين يا 5000 واحد دالتپارين زيرجلدي روزانه) و يا هپارين تفکيک نشده با دوز پايين (5000 واحد زيرجلدي دو بار در روز) براي جلوگيري از ترومبوآمبولي وريدي دريافت نمايند، مگر اينکه کنترا انديکاسيوني وجود داشته باشد. همچنين بيماران بايد براي پروفيلاکسي استرس اولسر از دارويي مانند سوکرالفات (1 گرم خوراکي و يا از طريق لوله معده چهار بار در روز)، رانيتيدين (150 ميليگرم خوراکي يا از طريق لوله معده دو بار در روز، 50 ميليگرم وريدي هر 8-6 ساعت، يا 25/6 ميليگرم در ساعت به صورت انفوزيون وريدي مداوم) يا امپرازول (40 ميليگرم خوراکي، وريدي، يا از طريق لوله معده روزانه) استفاده نمايند. در نهايت، بيماران بايد حمايت تغذيهاي، ترجيحا به صورت رودهاي، در عرض 48 - 24 ساعت از بستري در ICU دريافت نمايند.
جدا کردن از ونتيلاتور
به طور متوسط، بيماران مبتلا به ARDS حدود 16 روز (انحراف معيار = 8/15) در ICU و کلا 26 روز (انحراف معيار = 7/27) دربيمارستان سپري ميکنند. بيماراني که در آنها احتمال نياز به تهويه به مدتي بيش از 10 روز وجود دارد، ممکن است از تراکئوستومي سود ببرند.
همگام با بهبود بيماري زمينهاي و بهتر شدن وضعيت بيمار، بررسي تنفس خود به خودي ضروري است. براي اينکه بيمار واجد شرايط اين آزمون باشد بايد از نظر هموديناميک پايدار بوده و قادر به برآوردن نيازهاي اکسيژن از طريق روشهاي غيرتهاجمي باشد. آزمايشات تنفس خود به خودي در زمان 2-1 ساعت انجام ميشوند. احتمال موفقيتآميز بودن خارج ساختن لوله تراشه در صورتي که بيمار از نظر هموديناميک پايدار باقي بماند و پارامترهاي تهويه خوب داشته باشد بيشتر است. به منظور کاهش مدت زمان تهويه مکانيکي از پروتکلهاي استاندارد جدا کردن از ونتيلاتور استفاده شده است. جدول 5 خلاصه معيارهاي واجد شرايط بودن براي شروع يک آزمون تنفس خود به خودي و پارامترهاي جداسازي بيمار از ونتيلاتور را نشان ميدهد.
به حرکت درآوردن بيمار
بيماران متصل به دستگاه تهويه مصنوعي بايد تشويق به شرکت در اين درمان شوند. اين روش درماني با کاهش تعداد روزهاي درمان با دستگاه تنفس مصنوعي، بستري در ICU و بستري در بيمارستان در بيماران مبتلا به نارسايي تنفسي حاد همراهي دارد.
مراقبتهاي اوليه بعد از ARDS
مراقبت از بيماران مبتلا به ARDS بعد از دوره بيماري حاد و بستري طولاني مدتشان خاتمه نمييابد. پس از ترخيص از ICU، بيماران مبتلا به ARDS نسبت به قبل کيفيت پايينتر زندگي، ضعف قابلتوجه ناشي از نوروپاتي و ميوپاتي، اختلال شناختي دائمي و تاخير در بازگشت به کار دارند. مرگومير درطي سه سال در کساني که نياز به تهويه مکانيکي در ICU داشته اند در مقايسه با کساني که نياز به تهويه مکانيکي در ICU نداشتهاند و کساني که در ICU بستري نشدهاند بالاتر است (3/57% در مقابل 3/38% و 9/14%).
بيماران مبتلا به ARDS و يا آنهايي که نياز به تهويه طولاني مدت (بيش از هفت روز) در ICU داشتند از کساني که ARDS و يا نياز به تهويه طولاني مدت نداشتند، کيفيت زندگي پايينتر و ضعف بيشتري در زمان ترخيص داشتند. بيماريهاي رواني نيز به طور گستردهاي پس از ARDS شايع هستند، 43% - 17% از بازماندگان به افسردگي، 35% - 21% به PTSD، و 48% - 23% به اضطراب دچار شدند. عوامل خطر براي نتايج ضعيف شامل نمره بالاتر APACHE II، کسب بيماري در ICU، زمان طولانيتر بهبود اختلال عملکرد ريه و نارسايي چند عضوي و استفاده از کورتيکواستروييدهاي سيستميک است.
تمام تاثيرات زيان بار ناشي از بستري شدن در بيمارستان به علت ARDS با گذشت زمان از بين نميرود. اگرچه عملکرد ريه پس از پنج سال به نرمال نزديک ميشود، مسافت پيموده شده در شش دقيقه، عملکرد فيزيکي وکيفيت زندگي هنوز هم کاهش يافته است. علاوه بر اين، بسياري از بيماران از انزواي اجتماعي و اختلال عملکرد جنسي و بيش از نيمي از بيماران از افسردگي مداوم، اضطراب يا هر دو شکايت دارند.
از آنجا که بار بيماري دربيش از100،000نفرکه همه ساله از ARDS جان سالم به در مي برند سنگين است ، ضروري است که پزشکان مراقبتهاي اوليه خدمات مستمر براي اين بيماران را شروع و هماهنگ کرده، بر آن نظارت داشته باشند. پزشکان بايد وضعيت عملکردي را در پيگيري بيمارستاني ارزيابي نمايند و اطمينان حاصل کنند که از منابع تيم مراقبتهاي بهداشتي چند بعدي (به عنوان مثال درمانهاي فيزيکي وحرفهاي، پرستاري توانبخشي، مراقبت بهداشتي خانه، همکاران فوق تخصص) براي بهبود سلامت و عملکرد مطلوب استفاده ميشود. علاوه بر اين، پزشکان مراقبتهاي اوليه بايد براي اختلال در سلامت رواني غربالگري انجام دهند و در صورت نياز درمان را شروع کرده يا ارجاع دهند.

پاتوفيزيولوژي
پاتوفيزيولوژي ARDS به طور کامل شناخته نشده است. اعتقاد بر اين است که در ابتدا، يک آسيب مستقيم ريوي يا غيرمستقيم خارج ريوي، منجر به تکثير واسطههاي التهابي ميشود که اين واسطهها باعث تجمع نوتروفيلها در ميکروسيرکولاسيون ريه ميشوند. اين نوتروفيلها فعال شده به تعداد زياد از سطوح اندوتليال عروق و اپيتليال آلوئولار مهاجرت ميکنند و پروتئازها، سيتوکينها و گونههاي فعال اکسيژن را آزاد ميکنند. مهاجرت و آزاد شدن واسطهها منجر به نفوذپذيري پاتولوژيک عروق، شکاف در سد اپيتليال آلوئولار و نکروز سلولهاي آلوئولي نوع I و II ميشود. اين فرايند منجر به ادم ريه، تشکيل غشاء هياليني و از دستدادن سورفاکتانت ميشود که سبب کاهش کمپليانس ريوي شده، تبادل هوا را دشوار ميکند. ارتشاح بعدي فيبروبلاستها ميتواند منجر به رسوب کلاژن، فيبروز، و بدتر شدن بيماري شود. شکل 1 راديوگرافي يک بيمار مبتلا به ARDS ميباشد که کدورت فضاهاي هوايي دو طرفه را نشان ميدهد که از اين فرآيند نتيجه شده است.
اقدامات متعددي به طور همزمان در فرايند بهبود رخ ميدهد. سيتوکينهاي ضدالتهابي نوتروفيلهاي آسيب رسان را غيرفعال ميکنند و سپس نوتروفيلها دچار آپوپتوز و فاگوسيتوز قرار ميشوند. سلولهاي آلوئولي نوع دو تکثير شده و به سلولهاي نوع يک تمايز مييابند که سبب برقراري مجدد يکپارچگي در پوشش اپيتليال و ايجاد گراديان اسمزي ميشوند. اين گراديان اسمزي سبب به خارج کشيده شدن مايع از آلوئولها و ورود آن به ميکروسيرکولاسيون و لنفاتيکهاي ريه ميشود. به طور همزمان، ماکروفاژها و سلولهاي آلوئولي، ترکيبات پروتئيني را از آلوئولها برميدارند و به ريهها اجاره ميدهند تا بهبود يابند.
عوامل خطر و ميزان بروز
در بزرگسالان اغلب موارد ARDS با سپسيس ريوي (46%) يا سپسيس غير ريوي (33%) همراهي دارد. عوامل خطر اين بيماري عبارتند ازعواملي که باعث آسيب مستقيم ريه ميشوند (مثل پنوموني، آسيب استنشاقي، کوفتگي ريه) وعواملي که آسيب غيرمستقيم ريه ميشوند (مثل سپسيس غير ريوي، سوختگيها، آسيب حاد ريه ناشي از تزريق خون). عوامل خطر در کودکان مشابه بزرگسالان است به علاوه اختلالات مرتبط با سن خاص، مانند عفونت با ويروس سنسيشيال تنفسي و آسيب ناشي از آسپيراسيون حالت نزديک به غرقشدگي. جدول 1 شامل علايم و نشانههاي بيانگر علل خاص ARDS است.
مطالعات اخير نشان ميدهند که در بزرگسالان ميزان بروز آسيب حاد ريه 86-22 مورد در هر 100.000 فرد- سال و ARDS تا 64 مورد در هر 100.000 فرد- سال است. يک کارآزمايي بزرگ آيندهنگر اروپايي تخمين زده است که 1/7% از بيماران بستري در ICU و 1/16% از تمام بيماران تحت تهويه مکانيکي دچار آسيب حاد ريه يا ARDS ميشوند. ميزان مرگومير داخل بيمارستاني اين شرايط بين 55% و 34% تخمين زده ميشود. عوامل خطر مرگومير شامل افزايش سن، بدتر شدن اختلال عملکرد چند عضوي پيشرونده، وجود بيماريهاي ريوي و غيرريوي، امتياز بالاتر در APACHE II و اسيدوز است. اکثر موارد مرگومير مربوط به ARDS به علت نارسايي چند عضوي است. هيپوکسمي مقاوم به درمان تنها مسوول 16% از مرگومير مرتبط با ARDS است.
در کودکان ARDS کمتر رايج است و کمتر احتمال دارد که منجر به مرگ شود. در مطالعهاي در سال 2009 در بيماران 6 ماه تا 15 سال نشان داده شد که ميزان بروز آسيب حاد ريه و ARDS به ترتيب 5/9 و 8/12 در هر 100.000 نفر – سال بود و مجموع مرگومير داخل بيمارستاني آنها 18% بود.
تشخيصهاي افتراقي
از آنجا که علايم اوليه ARDS غيراختصاصي هستند، پزشکان بايد ساير علل تنفسي، قلبي، عفوني و سمي را در نظر بگيرند (جدول 2). شرح حال بيمار (به عنوان مثال بيماريهاي همراه، مواجههها، داروها) همراه با يک معاينه فيزيکي با تمرکز بر روي سيستم تنفسي و قلبي - عروقي ميتواند در محدود کردن تشخيصهاي افتراقي و تعيين دوره مطلوب درمان کمک کند.
اغلب، ARDS بايد از نارسايي احتقاني قلب و پنوموني افتراق داده شود (جدول 3). نارسايي احتقاني قلب با اضافه بار مايع مشخص ميشود، در حالي که بيماران مبتلا به ARDS بر اساس تعريف نشانههاي پرفشاري دهليز چپ و يا افزايش حجم واضح را ندارند. بيماران مبتلا به نارسايي احتقاني قلب ممکن است ادم، اتساع وريد ژوگولار، صداي سوم قلب، افزايش سطح پپتيد ناتريورتيک مغزي (BNP) و دفع نمک در پاسخ به ديورتيک داشته باشند. انتظار نميرود بيماران مبتلا به ARDS اين يافتهها را داشته باشند.
از آنجا که پنوموني يکي از علل عمده ARDS است، تشخيص بيماران مبتلا به پنوموني بدون عارضه از کساني که پنوموني عارضهدار شده با ARDS دارند سبب چالش تشخيصي بيشتري ميشود. به طور کلي، يک بيمار مبتلا به پنوموني بدون عارضه ممکن است نشانههايي از التهاب سيستميک و ريوي داشته باشد (به عنوان مثال، تب، لرز، خستگي، توليد خلط، درد قفسه سينه پلورتيک و ارتشاح موضعي يا چند کانوني)؛ هيپوکسي همراه بايد به تجويز اکسيژن پاسخ دهد. اگر هيپوکسي با تجويز اکسيژن اصلاح نشود، بايد به ARDS مشکوک شد و آن را بر اساس معيارهاي تشخيصي AECC اثبات نمود. در افراد مبتلا به پنوموني و ARDS همزمان، درمان شامل آنتيبيوتيکها و تهويه مکانيکي است.
درمان و پشتيباني
درمان ARDS حمايتي است از جمله تهويه مکانيکي، جلوگيري از استرس اولسر و ترومبوآمبولي وريدي، و حمايت تغذيهاي. جدول 4 درمان ARDS را به صورت خلاصه نشان داده است.
تهويه مکانيکي
بيشتر بيماران با ARDS نياز به آرام بخش، لولهگذاري و تهويه همزمان با درمان بيماري زمينهاي دارند. بر اساس دستورالعمل باليني موسسه ملي قلب، ريه و خون (Net ARDS) هر مد ونتيلاتور ممکن است استفاده شود. سرعت تنفس ، زمان بازدم، فشار مثبت پايان بازدمي و FiO2، مطابق با پروتکلهاي ARDSNet تنظيم ميشوند. تنظيمات به گونهاي اعمال ميشوند که اشباع اکسيژن شرياني 95% - 88% و فشار کفهاي (plateau) 30 سانتيمتر آب يا کمتر (براي جلوگيري از باروتروما) حفظ شود. دستورالعملهاي درمان باليني توصيه به حفظ pH شرياني از 45/7 -30/7 دارند اگر چه بيماران در برخي از کارآزماييهاي تحقيقاتي هيپرکاپنه کنترل شده و pH تا 15/7 را نيز تحمل کردهاند.
شواهد نشان داده است که شروع با حجم جاري کم به ميزان 6 ميليليتر به ازاي هر کيلوگرم نسبت به شروع با حجمهاي جاري معمول 15 - 10 ميليليتر به ازاي هر کيلوگرم برتري دارد (تعداد مورد نياز براي درمان [NNT] = 4/11). به طور مشابه، فشار مثبت پايان بازدمي بالاتر(12 سانتيمتر H2O يا بيشتر) در مقايسه با مقادير پايينتر در حد 12-5 سانتيمتر H2O با کاهش مرگومير همراهي دارد (NNT = 20). مايع درماني محافظه کارانه (براي پايين نگهداشتن فشار مرکزي) با کاهش تعداد روزهاي تحت درمان با ونتيلاتور و افزايش روزهاي خارج ICU همراهي دارد. با توجه به عوارض بالقوه کاتترهاي شريان ريوي و وريد مرکزي از آنها به طور معمول استفاده نميشود و تنها بايد توسط افراد آموزش ديده و با تجربه استفاده شود.
درمان هاي دارويي
گزينههاي دارويي براي درمان ARDS محدود است. هر چند درمان با سورفاکتانت ممکن است در کودکان مبتلا به ARDS مفيد باشد، يک مرور کاکرين سودمندي آن را در بزرگسالان نشان نداد. استفاده از کورتيکواستروييدها بحث برانگيز است. مطالعات شاهددار تصادفيشده و مطالعات همگروهي از استفاده زودرس از کورتيکواستروييدها براي کاهش تعداد روزهاي تحت درمان با ونتيلاتور حمايت ميکنند (با دوز متيل پردنيزولون در محدوده 120 - 1 ميليگرم به ازاي هر کيلوگرم در روز). با اين حال، هيچگونه سودمندي قطعي از جهت مرگومير براي اين درمان نشان داده نشده است. زماني که استفاده از کورتيکواستروييدها مدنظر باشد بايد با يک متخصص مراقبتهاي ويژه مشورت شود.
علاوه بر اقدامات تهويهاي، بيماران مبتلا به ARDS بايد هپارين با وزن مولکولي کم (40 ميليگرم انوکساپارين يا 5000 واحد دالتپارين زيرجلدي روزانه) و يا هپارين تفکيک نشده با دوز پايين (5000 واحد زيرجلدي دو بار در روز) براي جلوگيري از ترومبوآمبولي وريدي دريافت نمايند، مگر اينکه کنترا انديکاسيوني وجود داشته باشد. همچنين بيماران بايد براي پروفيلاکسي استرس اولسر از دارويي مانند سوکرالفات (1 گرم خوراکي و يا از طريق لوله معده چهار بار در روز)، رانيتيدين (150 ميليگرم خوراکي يا از طريق لوله معده دو بار در روز، 50 ميليگرم وريدي هر 8-6 ساعت، يا 25/6 ميليگرم در ساعت به صورت انفوزيون وريدي مداوم) يا امپرازول (40 ميليگرم خوراکي، وريدي، يا از طريق لوله معده روزانه) استفاده نمايند. در نهايت، بيماران بايد حمايت تغذيهاي، ترجيحا به صورت رودهاي، در عرض 48 - 24 ساعت از بستري در ICU دريافت نمايند.
جدا کردن از ونتيلاتور
به طور متوسط، بيماران مبتلا به ARDS حدود 16 روز (انحراف معيار = 8/15) در ICU و کلا 26 روز (انحراف معيار = 7/27) دربيمارستان سپري ميکنند. بيماراني که در آنها احتمال نياز به تهويه به مدتي بيش از 10 روز وجود دارد، ممکن است از تراکئوستومي سود ببرند.
همگام با بهبود بيماري زمينهاي و بهتر شدن وضعيت بيمار، بررسي تنفس خود به خودي ضروري است. براي اينکه بيمار واجد شرايط اين آزمون باشد بايد از نظر هموديناميک پايدار بوده و قادر به برآوردن نيازهاي اکسيژن از طريق روشهاي غيرتهاجمي باشد. آزمايشات تنفس خود به خودي در زمان 2-1 ساعت انجام ميشوند. احتمال موفقيتآميز بودن خارج ساختن لوله تراشه در صورتي که بيمار از نظر هموديناميک پايدار باقي بماند و پارامترهاي تهويه خوب داشته باشد بيشتر است. به منظور کاهش مدت زمان تهويه مکانيکي از پروتکلهاي استاندارد جدا کردن از ونتيلاتور استفاده شده است. جدول 5 خلاصه معيارهاي واجد شرايط بودن براي شروع يک آزمون تنفس خود به خودي و پارامترهاي جداسازي بيمار از ونتيلاتور را نشان ميدهد.
به حرکت درآوردن بيمار
بيماران متصل به دستگاه تهويه مصنوعي بايد تشويق به شرکت در اين درمان شوند. اين روش درماني با کاهش تعداد روزهاي درمان با دستگاه تنفس مصنوعي، بستري در ICU و بستري در بيمارستان در بيماران مبتلا به نارسايي تنفسي حاد همراهي دارد.
مراقبتهاي اوليه بعد از ARDS
مراقبت از بيماران مبتلا به ARDS بعد از دوره بيماري حاد و بستري طولاني مدتشان خاتمه نمييابد. پس از ترخيص از ICU، بيماران مبتلا به ARDS نسبت به قبل کيفيت پايينتر زندگي، ضعف قابلتوجه ناشي از نوروپاتي و ميوپاتي، اختلال شناختي دائمي و تاخير در بازگشت به کار دارند. مرگومير درطي سه سال در کساني که نياز به تهويه مکانيکي در ICU داشته اند در مقايسه با کساني که نياز به تهويه مکانيکي در ICU نداشتهاند و کساني که در ICU بستري نشدهاند بالاتر است (3/57% در مقابل 3/38% و 9/14%).
بيماران مبتلا به ARDS و يا آنهايي که نياز به تهويه طولاني مدت (بيش از هفت روز) در ICU داشتند از کساني که ARDS و يا نياز به تهويه طولاني مدت نداشتند، کيفيت زندگي پايينتر و ضعف بيشتري در زمان ترخيص داشتند. بيماريهاي رواني نيز به طور گستردهاي پس از ARDS شايع هستند، 43% - 17% از بازماندگان به افسردگي، 35% - 21% به PTSD، و 48% - 23% به اضطراب دچار شدند. عوامل خطر براي نتايج ضعيف شامل نمره بالاتر APACHE II، کسب بيماري در ICU، زمان طولانيتر بهبود اختلال عملکرد ريه و نارسايي چند عضوي و استفاده از کورتيکواستروييدهاي سيستميک است.
تمام تاثيرات زيان بار ناشي از بستري شدن در بيمارستان به علت ARDS با گذشت زمان از بين نميرود. اگرچه عملکرد ريه پس از پنج سال به نرمال نزديک ميشود، مسافت پيموده شده در شش دقيقه، عملکرد فيزيکي وکيفيت زندگي هنوز هم کاهش يافته است. علاوه بر اين، بسياري از بيماران از انزواي اجتماعي و اختلال عملکرد جنسي و بيش از نيمي از بيماران از افسردگي مداوم، اضطراب يا هر دو شکايت دارند.
از آنجا که بار بيماري دربيش از100،000نفرکه همه ساله از ARDS جان سالم به در مي برند سنگين است ، ضروري است که پزشکان مراقبتهاي اوليه خدمات مستمر براي اين بيماران را شروع و هماهنگ کرده، بر آن نظارت داشته باشند. پزشکان بايد وضعيت عملکردي را در پيگيري بيمارستاني ارزيابي نمايند و اطمينان حاصل کنند که از منابع تيم مراقبتهاي بهداشتي چند بعدي (به عنوان مثال درمانهاي فيزيکي وحرفهاي، پرستاري توانبخشي، مراقبت بهداشتي خانه، همکاران فوق تخصص) براي بهبود سلامت و عملکرد مطلوب استفاده ميشود. علاوه بر اين، پزشکان مراقبتهاي اوليه بايد براي اختلال در سلامت رواني غربالگري انجام دهند و در صورت نياز درمان را شروع کرده يا ارجاع دهند.
ساعت : 3:10 pm | نویسنده : admin
|
مطلب بعدی